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ABSTRACT - Genome-wide selection (GWS) uses simultaneously the effect of the thousands markers 

covering the entire genome to predict genomic breeding values for individuals under selection. The possible 

benefits of GWS are the reduction of the breeding cycle, increase in gains per unit of time, and decrease of 

costs. However, the success of the GWS is dependent on the choice of the method to predict the effects of 

markers. Thus, the objective of this work was to predict genomic breeding values (GEBV) through artificial 

neural networks (ANN), based on the estimation of the effect of the markers, compared to the Ridge Regression

-Best Linear Unbiased Predictor/Genome Wide Selection (RR-BLUP/GWS). Simulations were performed by 

software R to provide correlations concerning ANN and RR-BLUP/GWS. The prediction methods were 

evaluated using correlations between phenotypic and genotypic values and predicted GEBV. The results 

showed the superiority of the ANN in predicting GEBV in simulations with higher and lower marker densities, 

with higher levels of linkage disequilibrium and heritability. 
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PREDIÇÃO DE VALORES FENOTÍPICOS E GENOTÍPICOS VIA RR-BLUP/GWS E REDES 

NEURAIS  

 

 

RESUMO - A seleção genômica ampla (Genome Wide Selection - GWS) utiliza simultaneamente o efeito de 

milhares de marcadores cobrindo todo o genoma para predizer o valor genético genômico dos indivíduos no 

processo de seleção. Os possíveis benefícios de seu uso são a redução do ciclo de melhoramento, propiciando 

maior ganho por unidade de tempo e diminuição de custos. O sucesso da GWS está atrelado a escolha do 

método de predição dos efeitos dos marcadores. Assim, neste trabalho, visou-se aplicar as redes neurais 

artificiais (Artificial Neural Networks - ANNs), com a finalidade de predizer os valores genéticos genômicos 

(Genomic Breeding Values - GEBVs) baseado na estimação dos efeitos dos marcadores comparados a 

regressão de cumeeira – melhor preditor não viesado/seleção genômica ampla (Ridge Regression – Best Linear 

Unbiased Predictor/Genome Wide Selection – RR-BLUP/GWS). Foram efetuadas simulações por meio do 

software R, fornecendo as correlações referentes às ANNs e a RR-BLUP/GWS. Os métodos de predição foram 

avaliados utilizando correlações entre o valor fenotípico e valor genotípico com o valor genético genômico 

predito. Os resultados demonstraram superioridade das ANNs na predição dos GEBVs nos cenários com maior 

e menor densidade de marcadores, paralelo a níveis mais altos de desequilíbrio de ligação e maior 

herdabilidade. 

 

Palavras-chave: Melhoramento genético. Correlação. Marcadores moleculares. 
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INTRODUCTION 
 

Genome-wide selection (GWS) consists of 

using hundreds to thousands of markers saturating 

the genome in order to predict genomic breeding 

values (GEBV) of the individuals through statistical 

methods based on the estimation of effects of 

markers. Genomic selection, unlike marker-assisted 

recurrent selection, uses all estimated effects of 

marker loci regardless of whether or not they are 

significantly associated with the phenotype in order 

to predict the GEBV of each individual in the 

population under selection (SINGH; SINGH, 2015). 

The efficiency of GWS is related to the 

choice of the prediction method of the GEBV. Thus, 

several statistical methods have been used, such as 

the Best Linear Unbiased Prediction (BLUP) 

(HENDERSON, 1975), Stepwise Regression 

(MEUWISSEN; HAYES; GODDARD, 2001), Ridge 

Regression–BLUP (RR-BLUP) (MEUWISSEN; 

HAYES; GODDARD, 2001), Bayesian Estimation 

(MEUWISSEN; HAYES; GODDARD, 2001) and 

Artificial Neural Networks (EHRET et al., 2015). 

The statistical models employed to predict 

GEBV provide different assumptions on the number 

and effects of Quantitative Trait Loci (QTL). Thus, 

the methods differ in general in the assumption on 

the genetic model associated with the quantitative 

character (RESENDE et al., 2008). RR-BLUP uses 

the same estimator as the ridge regression, but 

estimates the parameter penalized by the              

Restricted Maximum Likelihood (REML)  

(SCHULZ-STREECK; OGUTU; PIEPHO, 2011). In 

the RR-BLUP method, the effects of all markers are 

estimated simultaneously and are assumed as random 

and with the same allelic frequency, equally 

contributing to genetic variation (RESENDE et al., 

2011).  

Thus, the present work proposes the use of 

Artificial Neural Networks (ANN) compared to RR-

BLUP, using simulated data, under different 

scenarios—different levels of heritability, linkage 

disequilibrium (LD) and loci numbers—providing 

information on what methods to use in such 

scenarios and make the use of GWS more efficient 

with real data. Some studies have already been 

conducted comparing methods through simulations 

under other scenarios—types and density of markers, 

and different heritability, and linkage disequilibrium 

(GUO et al., 2012; SOLBERG; SONESSON; 

WOOLLIANS, 2008). 

Thus, GWS is useful in plant breeding, and its 

contributions can be seen in eucalyptus breeding 

with effects estimated via RR-BLUP (RESENDE et 

al., 2012). These authors found accuracy in predict 

GEBV of 0.74 to 0.88 for a Cenibra population, and 

of 0.55 to 0.73 for a Fibria population. Moreover, 

they found reduction in the breeding cycle of 75%, 

and the selection efficiency could reach 200% 

(Fibria) and 300% (Cenibra), depending on the 

growth characteristics and quality of the evaluated 

wood. GWS has also showing its potential in 

simulated studies in annual crops such as corn and 

wheat (BERNARDO, 2009; LORENZANA; 

BERNARDO, 2009; WONG; BERNARDO, 2008).  

In this context, the use of machine learning 

methods such as ANN in genomic selection has been 

promising in genomic prediction, as shown in animal 

breeding (GIANOLA et al., 2011; TUSELL et al., 

2013; OKUT et al., 2013). However, few 

applications have been observed in animal and plant 

breeding. Thus, in the present work artificial neural 

networks were applied to evaluate their efficiency in 

predicting genomic breeding values of individuals 

within populations.  

 

 

MATERIAL AND METHODS 
 

Simulations of phenotypic and genotypic data 

 

Simulations of the phenotypic and genotypic 

data were performed using 24 treatments, 100 

replications, and population size of 1,000 

individuals. The treatments consisted of absence of 

dominance under two levels of heritability, 20% and 

40%—under the assumption that these values are 

similar to what is actually found for quantitative 

characters in breeding programs; six linkage 

disequilibrium levels (0.5, 0.6, 0.7, 0.8, 0.9 and 1.0); 

and different numbers of loci, 100 and 200, 

according to Resende Júnior (2010). The levels of 

heritability, linkage disequilibrium and the different 

numbers of loci adopted were the scenarios in which 

the simulations were performed comparing the RR-

BLUP and the ANN. 

The use of larger numbers of markers was 

limited due to computational resources, since it 

would be necessary to simulate thousands of markers 

used in hundreds of individuals under the number of 

replications, which would require much time, and the 

conclusion of the analyzes would be not possible. 

However, the number of markers used was assumed 

sufficient for the comparison between RR-BLUP/

GWS and ANN. The choosing of the scenarios was 

based on a given character that presents any of these 

characteristics; knowing in which there would be 

greater or lesser correlations between the phenotypic 

and predicted values; and comparing these same 

scenarios applied with other statistical methods 

(RESENDE et al., 2012).  

Two alleles per locus were attributed for both 

phenotypic and genotypic simulations. The effect of 

the favorable allele in the genotype simulation 

procedure was simulated according to Resende 

Júnior (2010), using the formula: 1  , 

wherein L is the L-th gene. The 1,000 individuals 

were simulated for the less favorable allele (-aL) 

according to the model f = g+e, wherein g is the sum 

aL = 
 L - 1 

 L + 1 
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of the genetic effects of each locus and e is the 

environmental effects. These environmental effects 

are obtained from a normal distribution with mean 

10 and variance compatible with the heritability 

tested (20% and 40%), by using the formula 2 

, wherein   is the environmental 

variance,  is the genetic variance, and h2 is the 

heritability.  

The phenotypic simulation was performed 

with 1,000 individuals, heritability of 20% and 40% 

and linkage disequilibrium of 0.5, 0.6, 0.7, 0.8, 0.9 

and 1.0, and additive effects. In each individual, 

genotypes of type A1A1, A1A2, or A2A2 were 

randomly drawn at each locus and coded as 0, 1 and 

2, respectively. Number 1 of the A1A1 and A1A2 

genotypes denotes the unfavorable allele and the 

number 2 denotes the favorable allele. The 

simulations were performed in the R software (R 

CORE TEAM, 2015).   

 

Estimation of genomic genetic values 

 

2.σM
2 =

σg
2(1-h

2
)

h
2

 σM
2  

σg
2 

Artificial neural networks (ANN) 

 

The ANN used was the supervised learning, 

and the learning algorithm chosen to adjust the 

weights in the training phase was the 

backpropagation. The adjustment is performed by 

comparing the output values to the desired values. If 

the difference is not acceptable, it is necessary to 

adjust the weights. 

In the input layer, the values (X1, X2, X3 ..., 

Xn) correspond to the neurons that are multiplied by 

their respective weights wij which can assume 

positive or negative values (Table 1). The 

intermediate or processing layer represents the 

hidden layer and the output layer provides the GEBV 

(Figure 1). The neuron activation is achieved through 

the application of an activation function, which 

activates or not the output, and is provided by the 

sum of the product of the input data by the synaptic 

weights. This function of activation can be linear, 

sigmoidal, ramp function, and step function, and its 

result represents the predicted GEBV, which is the 

output signal, and is compared with the phenotypic 

and genotypic values (HESLOT et al., 2012). 

Figure 1. Architecture of an artificial neural network: X1 and X2 are the input values; W is the synaptic weight associated 

with each input; f (.) is the activation function; and Z is the network output. 

Backpropagation is a supervised algorithm 

that uses pairs (input, desired output) to adjust the 

network weights by an error correction mechanism. 

The training consists of two phases; each phase runs 

through the network in one direction. These phases 

are called forward and backward phase. The forward 

phase is used to define the output of the network for 

a given input pattern. The backward phase uses the 

desired output and the output provided by the 

network to update the weights of its connections. 

In order to choose the model, networks with 

three layers were used, and different architectures 

were tested, varying the number of neurons in the 

middle layer and the function of activation between 

the sigmoidal and hyperbolic tangent, i.e., it was 

tested which factors together formed the best result 

network to be used in the development of the system 

(MARENDA et al., 2011). 

Table 1. Architecture of the Artificial Neural Network (ANN) used for the prediction of genomic breeding values (GEBV).  

Inputs Wij 

X1 + 

X2 - 

... ... 

X100 + 

 1 
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The ANN configuration consisted of the 

following components: number of neurons in the 

input layer (100), number of interactions (20), 

learning rate (0.01), lower weight for neurons (0), 

and higher weight for neurons (0.2). These 

components were used for the prediction together 

with the number of individuals for the network 

learning (900), number of individuals for ANN 

validation (100), number of replications (100), 

number of individuals (1,000), number of genes (100 

and 200) and number of interactions (0). Thus, the 

ANN configuration was simulated for 100 (100, 

1,000, 100, 0, 0.4, 0.8, 900, 100, 100, 20, 0.01, 0, 

0.2) and 200 simulates (200, 1,000, 200, 0, 0.4, 0.8, 

900, 100, 200, 100, 0.04, 0.1). These configurations 

were established through tests performed by altering 

the values through simulation, choosing those in that 

the ANN outperform the RR-BLUP/GWS in most 

correlations. The analysis were performed using the 

RSNNS package (BERGMEIR; BENITEZ, 2012) in 

the software R (R CORE TEAM, 2015). 

 

RR-BLUP/GWS 

 

The prediction of the effects of markers 

according to the methodology proposed by Resende 

et al. (2008) is based on the mixed second linear 

model: y = Xb + Zh + e, wherein y is the vector of 

phenotypic observations; b is the vector of fixed 

effects; h is the vector of random effects of the 

markers—random residue vector. X and Z are the 

incidence matrices for b and h. The incidence matrix 

Z has the values 0, 1 and 2 referring to the number of 

alleles of the gene. The h is the number of intervals 

multiplied by 4, i.e., the number of possible 

haplotypes for each interval. The structure of means 

and variances were defined as follows: h ~ N (0, G); 

E(y+Xb); e ~ N (0, R= ); Var (y) = V = ZGZ’ + 

R; G = , wherein Ih has order 4; e is the 

variance of the effects of haplotypes in the ith 

interval; and n is the total number of intervals. The 

effects of vector h are adjusted as random covariates 

associated with phenotypes, thus, it is renamed as 

Ridge Regression (RR), also known as RR-BLUP/

GWS. The equations of the mixed model for the 

prediction of h via the RR-BLUP/GWS method are 

equivalent to: . , 

wherein  is the total genetic variance of the 

character; and  is the residual variance. Thus, the 

genomic genetic value is given by the equation, in 

which Zi is equivalent to 0, 1 and 2.  

The predictive capacity of artificial neural 

networks and RR-BLUP was obtained by comparing 

the mean correlation of the predicted and simulated 

genetic values (phenotypic and genotypic values). 

Iσe
2 

IσA
2 n  

 

X'X X'Z

Z'X Z'X+I
σe

2

(σ
g

2
n) 

  b
 

h 
 =  

X'y

Z'y
  

σg
2 

σe
2 

These RR-BLUP and ANN correlations were 

compared by the t-test at 5% significance level by 

observing the confidence intervals of the two 

methods for one of the treatments evaluated, i.e., 

those confidence intervals for correlations in             

which there was an overlap were classified as                         

non-significant. Several configurations were tested 

for the ANN, choosing the one that overperformed 

the RR-BLUP most of the time, and applied in the 

scenarios adopted. The simulation and estimation 

analyzes of the RR-BLUP/GWS were performed 

using the rrBLUP package (ENDELMAN, 2011), 

and then implemented in the R software (R CORE 

TEAM, 2015). The comparisons between the means 

of the RR-BLUP and the ANN correlations were 

performed by the t-test at 5% significance level. 

 

 

RESULTS AND DISCUSSION 
 

The mean correlations were higher for the 

following scenarios: 100 markers, linkage 

disequilibrium (LD) of 0.5, 0.6, 0.7, and 0.8 for 20% 

heritability; and LD of 0.5, 0.6, and 0.8 for 40% 

heritability, compared to the same LD using 200 

markers (Table 2), between the phenotypic and 

predicted values for the ANN. 

The use of a higher density of markers 

resulted in less predictive capacity. The 100 markers 

had superiority at all levels of LD and heritability, 

providing higher correlations and indicating greater 

predictability with RR-BLUP/GWS. Guo et al. 

(2012) found two situations: the reduction of density 

of markers from 1.6 cM to 20 cM reduced the 

prediction accuracy; and the reduction of density to 

40 cM increased the accuracy from 0.26 (30 cM) to 

0.29. 

Lorenzana and Bernardo (2009) evaluated the 

accuracy of different numbers of markers and found 

an increase in accuracy in higher densities for BLUP 

in two-parent populations of maize (Zea mays L.), an 

Arabidopsis sp., and barley (Hordeum vulgare L.), 

for grain moisture, glucose content in maize, grain 

yield, and grain protein content (alpha amylase). 

According to these authors, the highest accuracies 

were obtained with more than 100 markers for the 

Arabidopsis sp., a double haploid of maize, and 

barley, and with 200 to 800 in a corn population 

from random crossing. Lenz et al. (2017) also 

identified lower accuracies by reducing density to 

less than 500 SNPs in a black spruce (Picea 

Mariana) population while assessing wood growth 

and quality. 

Zhao et al. (2012) used RR-BLUP with 

marker density of 100 to 800 SNPs and found higher 

accuracy with increasing number of markers, from 

0.87 to 0.97 for GEBV and phenotypic values for 

grain moisture, and from 0.45 to 0.69 for grain yield. 

These results are probably connected to the low gene 

detection capacity, overestimation of the gene's 
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effects, and the small degree of freedom to estimate 

the effects of markers (MEUWISSEN; HAYES; 

GODDARD, 2001). 

These results for density of markers—higher 

values obtained using smaller number of              

markers—can be explained by the capture of more 

genes of greater effect than using high densities 

(GUO et al., 2012). According to Muir (2007) and 

Clark, Hickey and Van der Werf (2011), increasing 

the number of phenotypes and genotypes in relation 

to the increase in the density of markers is also 

necessary. These results, however, are conditioned 

by the nature of the genetic control of the characters 

under study. 

Table 2. Mean values of correlations between phenotypic and predicted values by Artificial Neural Networks (ANN) and 

via Best Linear Unbiased Prediction (BLUP)/genomic wide selection (GWS) methods for 100 and 200 genes, 20% and 40% 

heritability and linkage disequilibrium (LD) of 0.5; 0.6; 0.7; 0.8; 0.8; 0.9 and 1.0. 

*Significant at 5% by the t test.  

The density of markers needed to accurate 

predictions depends on the level of linkage 

disequilibrium between the markers and the gene 

(MEUWISSEN; HAYES; GODDARD, 2001). 

Moreover, the use of a greater percentage of 

individuals (12.5% to 100%) for the training 

population to estimate the effects of markers results 

in higher accuracy (ZHAO et al., 2012). According 

to Guo et al. (2012), the density of markers, as well 

as the proportion of individuals used for the training 

population, have less influence on GWS than on 

marker-assisted selection. 

Regarding the LD, the mean correlations for 

ANN for the LD level of 0.5 to 1.0 ranged from 0.09 

Number  

of locus 

Inheritability 

(h2) 

Linkage 

disequilibrium 

Color (Phenotypic and predicted values) 

ANN BLUP/GWS 

  
0.5* 0.0911 0.0365 

  
0.6* 0.1384 0.0739 

100 20 0.7* 0.1928 0.1169 

  
0.8* 0.2608 0.1907 

  
0.9* 0.3308 0.2782 

  
        1* 0.3904 0.3552 

     

  
0.5* 0.1392 0.0526 

  
0.6* 0.1991 0.1253 

100 40 0.7* 0.2819 0.2244 

  
0.8* 0.4013 0.3429 

  
        0.9 0.4826 0.4598 

  
        1 0.5839 0.5763 

     

  
        0.5 0.0202 0.0331 

  
0.6* 0.1096 0.0478 

200 20 0.7* 0.1870 0.0990 

  
0.8* 0.2472 0.1505 

  
0.9* 0.3442 0.2354 

  
        1* 0.4120 0.3211 

     

  
0.5* 0.0878 0.0433 

  
0.6* 0.1818 0.0961 

200 40 0.7* 0.2840 0.1987 

  
0.8* 0.3842 0.2849 

  
0.9* 0.4931 0.3981 

  
         1* 0.5959 0.5413 

 1 
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to 0.39 and from 0.13 to 0.58 for 20% to 40% 

heritability, respectively. For RR-BLUP, the lowest 

and highest LD varied from 0.03 to 0.35 and from 

0.05 to 0.57 for 20% and 40% heritability, 

respectively (Table 2). Therefore, when a character 

is under a LD of 0.5, the RR-BLUP/GWS method 

has not a good prediction of the genomic genetic 

value, and its use may not be viable in GWS in this 

condition. Contrastingly, these methods can better 

predict the genomic genetic value of a given 

character under a LD of 1.0. The correlations 

increased with increasing LD level, with values of 

0.02 and 0.08 (LD = 0.5), and of 0.41 and 0.59               

(LD = 1.0) for the ANN, showing the capacity of this 

method in providing a good prediction under these 

conditions. The lowest averages found with the           

RR-BLUP/GWS were 0.03 and 0.04 (LD = 0.5) and 

the highest were 0.32 and 0.54 (LD = 1.0) (Table 2).  

Hayes et al. (2009) also found greater 

accuracy in the prediction of the GEBV with 

increasing LD in cattle breeding, with higher 

accuracy for LD>0.2. LD is specific to each 

population, thus, its measurement is recommended; 

and the dense genome coverage by markers is 

recommended to ensure that the prediction of most 

markers related to the agronomic character is in LD 

with QTLs (Quantitative Trait Loci) (SCHAPER et 

al., 2012).  

Table 3 shows the LDs associated with the 

correlations between the predicted GEBV and 

genotype values. The mean correlations ranged from 

0.18 to 0.89 and from 0.20 to 0.91 for 20% and 40% 

heritability, respectively, for ANN. Similarly, the 

mean values of the correlations were higher when 

using higher levels of LD in the simulation, thus, the 

prediction methods applied for these conditions may 

have good predictive capacity. 

Table 3. Mean values of correlations between genotypic and predicted values by Artificial Neural Networks (ANN) and via 

Best Linear Unbiased Prediction (BLUP)/genomic wide selection (GWS) methods for 100 and 200 genes, 20% and 40% 

heritability and Linkage disequilibrium of 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. 

Number  

of locus  

Inheritability 

(h2) 

Linkage 

disequilibrium 

Color (Phenotypic and predicted values) 

ANN BLUP/GWS 

  
0.5* 0.1861 0.0755 

  
0.6* 0.3188 0.1800 

100 20 0.7* 0.4659 0.3004 

  
0.8* 0.6076 0.4500 

  
0.9* 0.7529 0.6273 

  
1.0* 0.8911 0.8236 

     
  

0.5* 0.2098 0.0965 

  
0.6* 0.3253 0.2143 

100 40 0.7* 0.4395 0.3475 

  
0.8* 0.6222 0.5332 

  
0.9* 0.7624 0.7226 

  
                       1.0 0.9185 0.9175 

     
  

                       0.5 0.0727 0.0464 

  
0.6* 0.2226 0.1057 

200 20 0.7* 0.4172 0.2121 

  
0.8* 0.5761 0.3606 

  
0.9* 0.7488 0.5100 

  
1.0* 0.9355 0.7035 

     
  

0.5* 0.1315 0.0554 

  
0.6* 0.2912 0.1674 

200 40 0.7* 0.4551 0.3026 

  
0.8* 0.6244 0.4600 

  
0.9* 0.7850 0.6342 

  
1.0* 0.9470 0.8505 

 1 
*Significant at 5% by the t test.  

According to Habier, Fernando and Dekkers 

(2007), when the markers are in linkage 

disequilibrium with the QTL, the accuracy of the 

predicted GEBV is expected to be high. Zhong et al. 

(2009) evaluated GWS in barley populations and 

found that most of the evaluations that obtained 

better accuracy were under high LD (ZHONG et al., 

2009). A low LD represents a low collinearity 

between markers, which hinders the ability of 

regression methods, reducing the identification of 

genes (JANSEN, 2007). Collinearity is a factor on 

ridge regression approaches used by BLUP methods. 

However, when the effects of the genes are small 

they may require some collinearity between them to 

be observed. According to Liu et al. (2015), a higher 

LD level in the training population indicates low 

density of markers to cover the genome, but it means 

a high collinearity between linked markers, making it 

difficult to accurately evaluate the effects of small 

segments of the genome. 
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According to Solberg, Sonesson and 

Woolliams (2008), LD is the main factor that 

increase the correlations between the predicted and 

phenotypic values; in the presence of a higher LD 

level higher correlations are found. In plants, the 

characters governed by many genes usually have low 

heritability. Therefore, heritability is another factor 

that, at higher percentage, increase correlations.  

The simulations showed higher correlations 

between predicted GEBV and phenotype under 40% 

heritability for 100 and 200 marker alleles (Table 2). 

The same result was found for correlations between 

predicted GEBV and genotypic value with the same 

level of heritability, for 100 and 200 markers (Table 

3). Different results were found by Guo et al. (2012) 

with RR-BLUP; they found predicted accuracy 12% 

higher for 60% and 70% heritability than for 80% 

and 90%. 

A significant difference at 5% level by the          

t-test was found when comparing the simulations 

involving 100 genes with 20% heritability and LD of 

0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 between the ANN and 

RR-BLUP/GWS, based on the correlation means 

(Table 2). Thus, the ANN for this situation has 

higher predictive ability to estimate the phenotype 

compared to RR-BLUP/GWS. A significant 

difference was found for genotypic and predicted 

values, with ANN for all LD levels presenting better 

predictive capacity (Table 3). 

Simulations with 100 genes with 40% 

heritability presented no significant difference for 

LD correlations of 0.9 and 1.0 between ANN and 

RR-BLUP/GWS (Table 2). Correlations between 

genotypic values and predicted GEBV presented no 

significant difference for the LD of 1.0 in 40% 

heritability between ANN and RR-BLUP/GWS 

(Table 3). The other LD levels (0.5, 0.6, 0.7, 0.8 and 

0.9) presented a significant difference, with ANN 

presenting better predictive capacity compared to  

RR-BLUP/GWS. 

Simulations involving 200 genes with 20% 

heritability, through ANN, presented higher 

correlations between phenotypic and predicted 

values, compared to RR-BLUP/GWS. The ability to 

predict the effects of phenotypes with increasing LD 

was higher for ANN compared to RR-BLUP/GWS 

(Table 2). 

The simulations between the genotypic values 

and predicted GEBV with 20% heritability and 200 

genes for the LD level of 0.5 presented no significant 

difference between the ANN and RR-BLUP/GWS 

correlations (Table 3). The other LD levels presented 

a significant difference, with higher values for ANN 

compared to RR-BLUP/GWS, indicating less than a 

5% probability of this difference being by chance. 

Therefore, for the LD of 0.6, 0.7, 0.8, 0.9, and 1.0, 

ANN has higher ability to predict the effects of 

genotypes than the RR-BLUP/GWS. 

The simulations with 40% heritability 

presented a significant difference for all LD for 

correlations between predicted GEBV and genotype 

values. The t test indicates less than 5% probability 

of this difference being by chance (Table 3). 

Therefore, the ANN better estimates the effects of 

the markers than the RR-BLUP/GWS for these LD; 

and the ANN for this type of situation is a better 

predictor than the RR-BLUP/GWS for the effects of 

genotypes. 

The importance of ANN in the genetic 

improvement of plants is confirmed in other studies. 

For example, in the characterization of Italian rice 

cultivars by Marini, Zupan and Magrì (2004), the 

ANN of Kohonen, used to group data, were able to 

predict more than 90% sample sets. 

The potential application of ANN as a tool for 

genetic divergence analysis—an important step in 

the selection of contrasting individuals to be used in 

breeding programs—is represented in the results 

found by Barbosa et al. (2011). These authors 

reported the ANN generating four groups of papaya 

(Carica papaya L.) accessions with 90% of them 

correctly classified. This is another example of the 

potential of ANN to be used as a prediction method 

in GWS studies. 

ANN was more accurate in predicting maize 

and soybean yields depending on climatic 

conditions—coefficient of determination (r2) of 0.77 

for maize and 0.81 for soybean—compared to the 

Multiple Linear Regression—r2 of 0.42 for maize 

0.46 for soybean (KAUL; HILL; WALTHALL, 

2005).  

Silva et al. (2014) applied ANN via simulated 

characteristics with 40% and 70% heritability to 

predict genetic values and gains. The authors 

identified more effectiveness in the selection using 

ANN than in that based on the genotypic mean 

estimated by maximum likelihood. Greater 

coincidences between selected and rejected 

genotypes based on predicted genetic values were 

also found for ANN than for the maximum 

likelihood. 

Since the GWS presents more effects of 

markers (p) to be predicted than the number of 

evaluated individuals (n), a problem known as large 

p and small n. Therefore, there are no sufficient 

degrees of freedom to estimate all the effects of the 

marks simultaneously. Moreover, it overestimates 

the model in the training population caused by the 

multicollinearity between the markers, resulting in a 

low prediction capacity. 

In this context, more research possibilities are 

open to seek a better understanding and a more 

adequate application of ANN for plant breeding 

programs. In addition, simulation studies make it 

possible to search for optimizations in these 

researches before they are applied in practice with 

real data, reducing costs and laborious operations 

with its use, and avoiding scenarios in which the 

ANN is limitated. 

 



PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS 
 

 

A. E. COUTINHO et al. 

Rev. Caatinga, Mossoró, v. 31, n. 3, p. 532 – 540, jul. – set., 2018 539 

CONCLUSIONS 
 

Higher prediction capacities are achieved 

under high and low marker densities with high levels 

of linkage disequilibrium and high heritability; under 

these conditions, Artificial Neural Networks 

outperform RR-BLUP/GWS in predicting genomic 

genetic values.  
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