Ação antifúngica de óleos essenciais contra podridão de Fusarium em melão

Autores

DOI:

https://doi.org/10.1590/1983-21252023v36n301rc

Palavras-chave:

Cucumis melo. Fusarium pallidoroseum. Óleo essencial.

Resumo

Objetivou-se com esse trabalho determinar a composição e avaliar, ‘in vitro’ e ‘in vivo’, o efeito dos óleos essenciais de alecrim-pimenta (Lippia sidoides Cham.), alfavaca-cravo (Ocimum gratissimum L.), capim-limão (Cymbopogon citratus Stapf.), elixir-paregórico (Ocimum selloi Benth.), laranja (Citrus sinensis L.), manjericão (Ocimum micranthum Willd.),  Ocimum sp. e pimenta-de-macaco (Piper aduncum L.) no controle da podridão por Fusarium causada pelo fungo Fusarium pallidoroseum em frutos de melão. Os óleos essenciais foram obtidos por hidrodestilação e a composição química determinada por GC-MS e GC-FID. No ensaio ‘in vitro’, foi testado o efeito de cada óleo essencial (concentrações de 0, 500, 1500 e 3000µL/L) sobre o crescimento micelial do patógeno. Determinou-se a concentração efetiva que inibiu o crescimento micelial em 50% (EC50) pelo método de probit e o Índice de Crescimento Micelial (ICM). Os óleos essenciais com maior potencial inibidor no crescimento micelial do F. pallidoroseum foram avaliados quanto ao efeito inibitório na germinação de esporos do fungo no ensaio ‘in vitro’ e ‘in vivo’ com frutos de melão ‘Galia’. A análise da composição química possibilitou a identificação de quantidades variáveis de compostos químicos, com predominância dos compostos monoterpênicos. Os óleos essenciais de alecrim-pimenta, alfavaca-cravo, capim-limão e manjericão, apresentaram melhores efeitos na inibição do crescimento micelial e germinação dos esporos do fungo, mostrando-se promissores como matéria-prima para o desenvolvimento de fungicidas comerciais, em especial no controle de podridão causada por F. pallidoroseum, em pós-colheita.

Downloads

Não há dados estatísticos.

Referências

BRITO, D. I. V. et al. Phytochemical analysis and antifungal activity of the essential oil of Lippia sidoides Cham. and of the Thymol against Candida strains. Revista Brasileira de Plantas Medicinais, 17: 836-844, 2015.

CHEN, Q. et al. Effect of citronella essential oil on the inhibition of postharvest Alternaria alternata in cherry tomato. Journal of the Science of Food and Agriculture, 94: 2441-2447, 2014.

COMBRINCK, S.; REGNIER, T.; KAMATOU, G. P. P. In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33: 344-349, 2011.

DAS, S. et al. Exploration of some potential bioactive essential oil components as green food preservative. Lebensmittel-Wissenschaft & Technologie, 137: 1-8, 2021.

DEHSHEIKH, A. B. et al. Monoterpenes: essential oil components with valuable features. Mini Reviews in Medicinal Chemistry, 20: 958-974, 2020.

ELIZEI, V. G. et al. Immobilization of filamentous fungi with potential for agribusiness. Arquivos do Instituto Biológico, 81: 165-172, 2014.

FAO - Food And Agriculture Organization Of The United Nations. 2020. Value of Agricultural Production. Disponível em: https://www.fao.org/faostat/en/#data/QV. Acesso em: 23 out. 2022.

FINNEY, D. J. The Statistical Analysis of Slope-Ratio Assays. Journal of General Microbiology, 5: 223-230, 1951.

FONTANA, D. C. et al. Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338: 1-11, 2021.

FONTENELLE, R. O. S. et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. Journal of Antimicrobial Chemotherapy, 59: 934-940, 2007.

FUMAGALI, E. et al. Produção de metabólitos secundários em cultura de células e tecidos de plantas: o exemplo dos gêneros Tabernaemontana e Aspidosperma. Revista Brasileira de Farmacognosia, 18: 627-641, 2008.

GOBBO-NETO, L.; LOPES, N. P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30: 374-381, 2007.

GRIPPA, G. D. A. et al. Evaluation of the essential oil of Schinus terebinthifolius for the control of Colletotrichum gloeosporioides in vitro and in vivo. Revista Brasileira de Armazenamento, 35: 46-53, 2010.

GUIMARÃES, L. G. L. et al. Óleo essencial de Lippia sidoides nativas de Minas Gerais: Composição, estruturas secretoras e atividade antibacteriana. Revista Ciência Agronômica, 45: 267-275, 2014.

ISMAN, M. B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews, 19: 235-241, 2020.

MACEDO, I. T. F. et al. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus. Revista Brasileira de Parasitologia Veterinária, 22: 463-469, 2013.

MAREI, G. I. K.; RASOUL, M. A. A.; ABDELGALEIL; S. A. M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology, 103: 56-61, 2012.

MORAIS, S. R. D. et al. Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. International Journal of Analytical Chemistry, 2012: 1-5, 2012.

NABILA, A.; SOUFIYAN, A. Use of Plant Extracts in the Control of Post-Harvest Fungal Rots in Apples. Journal of Botanical Research, 1: 27-41, 2019.

OUSSOU, K. R. Etude chimique bio-guidée de l’huile essentielle d’Ocimum gratissimum (Lamiaceae). European Journal of Scientific Research, 24: 50-59, 2010.

RAVEAU, R.; FONTAINE, J.; LOUNÈS-HADJ SAHRAOUI, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods, 9: 1-31, 2020.

RGUEZ, S. et al. Tetraclinis articulata essential oil reduces Botrytis cinerea infections on tomato. Scientia Horticulturae, 266: 1-7, 2020.

RIBEIRO, F. W. M. et al. Chemical modification of gum arabic and its application in the encapsulation of Cymbopogon citratus essential oil. Journal of Applied Polymer Science, 132: 1-7, 2015.

ROZWALKA, L. C. et al. Extratos, decoctos e óleos essenciais de plantas medicinais e aromáticas na inibição de Glomerella cingulata e Colletotrichum gloeosporioides de frutos de goiaba. Ciência Rural, 38: 301-307, 2008.

SALIU, B. K. et al. Chemical Composition and Antibacterial (Oral Isolates) Activity of leaf Essential Oil of Ocimum gratissimum L. Grown in North Central Nigeria. International Journal of Current Research, 33: 22-28, 2011.

SILVA, D. M. H.; BASTOS, C. N. Atividade antifúngica de óleos essenciais de espécies de Piper sobre Crinipellis perniciosa, Phytophthora palmivora e Phytophora capsici. Fitopatologia Brasileira, 32: 143-145, 2007.

SIVAKUMAR, D.; BAUTISTA-BAÑOS, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64: 27-37, 2014.

SUÁREZ-QUIROZ, M. L. Q. et al. Aislamiento, identificación y sensibilidad a antifúngicos de hongos fitopatógenos de papaya cv. Maradol (Carica papaya L.). Revista Iberoamericana de Tecnología Postcosecha, 14: 115-124, 2013.

TERAO, D. et al. Manejo da podridão de melão pelo controle do amadurecimento através do 1-MCP, sob duas condições de armazenamento. Summa Phytopathologica, 35: 110-115, 2009.

TIGRINE-KORDJANI, N. et al. Kinetic investigation of rosemary essential oil by two methods: solvent-free microwave extraction and hydrodistillation. Food Analytical Methods, 5: 596-603, 2012.

VELÁZQUEZ-NUÑEZ, M. J. et al. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31: 1-4, 2013.

VIEIRA, F. et al. Essential oils for the postharvest control of blue mold and quality of ‘fuji’ apples. Pesquisa Agropecuária Brasileira, 53: 547-556, 2018.

ZHANG, C. et al. Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chemistry, 346: 1-12, 2021.

ZNINI, M. et al. In vitro antifungal activity and chemical composition of Warionia saharae essential oil against 3 apple phytopathogenic fungi. Food Science Biotechnology, 22: 113-119, 2013.

ZORE, G. B. et al. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 18: 1181-1190, 2011.

Downloads

Publicado

18-07-2023

Edição

Seção

Agronomia