ESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃO

Autores

Palavras-chave:

Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.

Resumo

A quantificação das emissões destes gases do solo é onerosa, uma vez que requer metodologias e equipamentos específicos. O objetivo deste foi avaliar a modelagem utilizando regressão não linear e redes neurais artificiais para estimar a emissão de CO2 em função do manejo do solo, e de suas propriedades físicas e químicas. A emissão de CO2 foi avaliada em dois diferentes manejos do solo, o plantio direto e o cultivo mínimo. As leituras de fluxo CO2 foram realizadas por meio de uma câmara de sistema fechado automático, determinou-se ainda a temperatura e teor de água do solo, densidade do solo e carbono orgânico total. O modelo de regressão e os modelos de redes neurais artificiais foram ajustados a partir da correlação entre as variáveis medidas nas áreas em que o solo foi manejado com plantio direto e cultivo mínimo, com os dados de emissão de CO2. As redes neurais artificiais são mais precisas na determinação das relações entre a emissão de CO2 e a temperatura, teor de água no solo, densidade do solo e carbono orgânico, quando comparado com os resultados de regressão linear.

Downloads

Não há dados estatísticos.

Referências

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2014.

BRAGA, A. P.; CARVALHO A. P. L. F.; LUDEMIR, T. B. Redes Neurais Artificiais: Teoria e Aplicações. Belo Horizonte, MG: LTC - Livros Técnicos e Científicos Editora S.A., 2000. 262 p.

BELCAVELLO, M. O. et al. Artificial neural networks in estimating the productivity of a forest harvesting machine. Journal of Engineering, 12: 52-58, 2022.

BURAGIENĖ, S. et al. Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment, 662: 786-795, 2019.

CHAPLOT, V. et al. Water erosion-induced CO2 emissions from tilled and no-tilled soils and sediments. Agriculture, Ecosystems & Environment, 159: 62-69, 2012.

DENG, L. et al. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Global Change Biology, 26: 2613-2629, 2020.

DIAO, W. et al. Influences of soil bulk density and texture on estimation of surface soil moisture using spectral feature parameters and an artificial neural network algorithm. Agriculture, 11: 1- 20, 2021.

DING, D.; WANG, Z.; HAN, Q. L. Neural-network-based output-feedback control with stochastic communication protocols. Automatica, 106: 221-229, 2019.

DOWHOWER, S. L. et al. Soil greenhouse gas emissions as impacted by soil moisture and temperature under continuous and holistic planned grazing in native tallgrass prairie. Agriculture, Ecosystems & Environment, 287: 1-11, 2020.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa Solos, 2018. 353 p.

FARINA, R. et al. Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems and Environment, 238: 128-141, 2017.

FERNANDES, M. M. H. et al. Estimation of soil organic matter content by modeling with artificial neural networks. Geoderma, 350: 46-51, 2019.

GOMES, L. C. et al. Modelagem e mapeamento dos estoques de carbono orgânico do solo no Brasil. Geoderma, 340: 337-350, 2019.

HAYKIN, S. Redes neurais: princípios e prática. 2. ed. Porto Alegre, RS, 2007. 900 p.

HUANG, Y. et al. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agriculture, Ecosystems & Environment, 268: 144-153, 2018.

JEREMIAH, J. J. et al. Results of Application of Artificial Neural Networks in Predicting Geo-Mechanical Properties of Stabilised Clays - A Review. Geotechnics, 1: 147-171, 2021.

LACERDA, L. C. et al. Prediction of Mechanical Availability in Mechanized Eucalyptus Forest Harvesting Using Artificial Neural Networks. Journal of Agricultural Science, 14: 1-7, 2022.

LEAL, F. A. et al. Redes neurais artificiais na estimativa de volume em um plantio de eucalipto em função de fotografias hemisféricas e número de árvores. Revista Brasileira de Biometria, 33: 233-249, 2015.

LIMA, J. R. S. et al. Impacts of land-use changes on soil respiration in the semi-arid region of Brazil. Revista Brasileira de Ciência do Solo, 44: e0200092, 2020.

LIU, Y. et al. Emission mechanism and reduction countermeasures of agricultural greenhouse gases–a review. Greenhouse Gases: Science and Technology, 9: 160-174, 2019.

MARTÍN, J. R. et al. Assessment of the soil organic carbon stock in Spain. Geoderma, 264: 117-125, 2016.

MELAKU, N. D. et al. Predicting nitrous oxide emissions after the application of solid manure to grassland in the United Kingdom. Journal of Environmental Quality, 49: 1-13, 2020.

NAWAZ, A. et al. Rice–wheat cropping systems in South Asia: issues, options and opportunities. Crop and Pasture Science, 70: 395-427, 2019.

NIKOLENKO, O. et al. Dynamics of greenhouse gases in groundwater: hydrogeological and hydrogeochemical controls. Applied Geochemistry, 105: 31-44, 2019.

OERTEL, C. et al. Greenhouse gas emissions from soils - A review. Geochemistry, 76: 327-352, 2016.

RIAHI, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42: 153-168, 2017.

RUTKOWSKA, B. et al. Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil and Tillage Research, 180: 21-28, 2018.

RUBIO, V. E.; DETTO, M. Spatiotemporal variability of soil respiration in a seasonal tropical forest. Ecology and Evolution, 7: 7104-7116, 2017.

SARKAR, T.; MISHRA, M. Soil erosion susceptibility mapping with the application of logistic regression and artificial neural network. Journal of Geovisualization and Spatial Analysis, 2: 1-17, 2018.

SHAKOOR, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Science of The Total Environment, 750: 1-16, 2021.

SILVA, B. O. et al. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research, 186: 224-232, 2019.

SILVA, F. R. D. et al. Physical properties of a Hapludox after three decades under different soil management systems. Revista Brasileira de Ciência do Solo, 40: e0140331, 2016.

THANGAVEL, R. et al. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: Impact of land use change in subtropical India (Meghalaya). Ecological Indicators, 93: 129-141, 2018.

VAZQUEZ, E. et al. Effects of no-tillage and liming amendment combination on soil carbon and nitrogen mineralization. European Journal of Soil Biology, 93: 103090, 2019.

VEDARAMAN, N. et al. Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates. Chemical Engineering and Processing: Process Intensification, 114: 46-54, 2017.

WANG, H. et al. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 261: 1-7, 2020.

XAVIER, C. V. et al. Crop rotation and succession in a no-tillage system: implications for CO2 emission and soil attributes. Journal of Environmental Management, 245: 8-15, 2019.

YUSTE, J. C. et al. Cascading effects associated with climate-change-induced conifer mortality in mountain temperate forests result in hot-spots of soil CO2 emissions. Soil Biology and Biochemistry, 133: 50-59, 2019.

ZHANG, Y. et al. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecological Indicators, 107: 1-14, 2019.

ZHAO, R. et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480-492, 2018.

ZOU, J. et al. Differential responses of soil CO2 and N2O fluxes to experimental warming. Agricultural and Forest Meteorology, 259: 11-22, 2018.

Downloads

Publicado

20-09-2022

Edição

Seção

Nota Técnica