Aplicação exógena de melatonina mitiga o estresse salino em soja
DOI:
https://doi.org/10.1590/1983-21252025v3812698rcPalavras-chave:
Glycine max. Salinidade. Atenuante. Biorregulador.Resumo
A salinidade é um fator abiótico que prejudica o crescimento e os mecanismos fisiológicos, bioquímicos e moleculares das plantas. Entre as plantas, a soja é uma cultura importante mundialmente, portanto, o manejo de fatores abióticos é essencial para mitigar os danos às plantas. No entanto, bioestimulantes, como a melatonina, estão sendo usados para aliviar o estresse causado por esses fatores. Portanto, este estudo teve como objetivo avaliar o crescimento, os pigmentos fotossintéticos e as relações hídricas de plantas de soja aplicadas a níveis de salinidade e aplicação exógena de melatonina. A pesquisa foi realizada em área experimental pertencente à Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil. O delineamento experimental foi em blocos casualizados, arranjados em esquema fatorial 3 x 3 (três níveis de salinidade na água de irrigação – 0.50, 3.00 e 5.00 dS m-1 e três concentrações de melatonina – 0, 0.5 e 1 mM), com três repetições. Aos 47 dias após o plantio, foram avaliados a altura da planta, diâmetro do caule, número de folhas, comprimento radicular, teor de clorofila (a, b e total), conteúdo relativo de água, umidade foliar e extravasamento de eletrólitos. As plantas de soja toleraram os efeitos da salinidade nos aspectos de crescimento, nos pigmentos fotossintéticos e nas relações hídricas até 3,00 dS m-1, independentemente da concentração de melatonina. A aplicação exógena de melatonina mitigou os efeitos do estresse salino na clorofila b e no conteúdo relativo de água, no nível de salinidade de 5.00 dS m-1 e concentração de 1 mM.
Downloads
Referências
ACOSTA-MOTOS, J. R. et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7: 1-38, 2017.
ALHARBY, H. F. et al. Enhancing salt tolerance in soybean by exogenous boron: Intrinsic study of the ascorbate-glutathione and glyoxalase pathways. Plants, 10: 1-13, 2021.
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.
ARNAO, M. B.; HERNÁNDEZ‐RUIZ, J. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biology, 23: 7-19, 2021.
BUTTAR, Z. A. et al. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9: 1-17, 2020.
CLIMATE-DATA.ORG. Clima. 2021. Available at: <https://pt.climate-data.org/america-do-sul/brasil/rio-grande-do-norte/mossoro-4448/>. Access on: Mar. 29, 2024.
FAOSTAT – Food and Agriculture Organization of the United Nations. Crops and livestock products. 2022. Available at: <https://www.fao.org/faostat/en/#data/QCL>. Access on: Mar. 6, 2024.
FERREIRA, D. F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38: 109-112, 2014.
GOMES, R. V.; COUTINHO, G. V. Soja. In: CAVALCANTI, F. J. A. et al. (Eds.). Recomendações de adubação para o estado de Pernambuco: 2ª aproximação. Recife, PE: Instituto Agronômico de Pernambuco, 2008. v. 3, cap. 9, p. 190.
HERNÁNDEZ, J. A. Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences, 20: 1-8, 2019.
IRIGOYEN, J. J; EINERICH, D. W.; SÁNCHEZ-DÍAZ, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84: 55-60, 1992.
KAMRAN, M. et al. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21: 1-27, 2019.
KHATRI, K.; RATHORE, M. S. Salt and osmotic stress-induced changes in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut. Plant Stress, 1: 1-15, 2022.
LEE, D. K. et al. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiology, 172: 575-588, 2016.
LI, M. et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 105: 333-345, 2021.
LIN, F. et al. Breeding for disease resistance in soybean: a global perspective. Theoretical and Applied Genetics, 135: 3773-3872, 2022.
LUTTS, S.; KINET, J. M.; BOUHARMONT, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398, 1996.
MISHRA, N. et al. Cell suspension culture and in vitro screening for drought tolerance in soybean using poly-ethylene glycol. Plants, 10: 1-20, 2021.
RADY, M. M. et al. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? South African Journal of Botany, 121: 294-305, 2019.
RASHEED, A. et al. Molecular tools and their applications in developing salt-tolerant soybean (Glycine max L.) cultivars. Bioengineering, 9: 1-22, 2022.
RATNAPARKHE, M. B. et al. Genomic designing for abiotic stress tolerant soybean. In: KOLE, C. (Ed.). Genomic designing for abiotic stress resistant oilseed crops. 1. ed. Springer Cham, 2022. cap. 1, p. 1-73.
RAZA, A. et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43: 1035-1062, 2023.
SHARIF, P. et al. Effect of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 15: 1859-1866, 2018.
SLAVICK, B. Methods of Studying Plant Water Relations. New York: Springer-Verlag, 1979. 449 p.
SOARES, V. A. et al. Effect of salicylic acid on the growth and biomass partitioning in water-stressed radish plants. Vegetos, 35: 585-591, 2022.
STANIAK, M.; SZPUNAR-KROK, E.; KOCIRA, A. Responses of soybean to selected abiotic stresses - Photoperiod, temperature and water. Agriculture, 13: 1-28, 2023.
WANG, Q. et al. The Physiological Mechanism of Melatonin Enhancing the Tolerance of Oat Seedlings under Saline-Alkali Stress. Agronomy, 13: 1-21, 2023.
ZHANG, M. et al. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PloS one, 14: e0226542, 2019.
ZÖRB, C.; GEILFUS, C. M.; DIETZ, K. J. Salinity and crop yield. Plant biology, 21: 31-38, 2019.
ZULFIQAR, F.; ASHRAF, M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105: 11-41, 2021.
Downloads
Publicado
Edição
Seção
Licença
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).