IMPACT OF CLIMATE CHANGE ON PLANTS, FRUITS AND GRAINS

Autores

  • Cristhyan Alexandre Carcia de Carvalho Universidade Federal Rural do Semi-árido
  • Ebenezer de Oliveira Silva Embrapa Agroindústria Tropical
  • Marlos Alves Bezerra Embrapa Agroindústria Tropical

Palavras-chave:

Carbon dioxide. Greenhouse gases. Photosynthetic metabolism. Plant physiology. Temperature.

Resumo

Over the past few years, the increased use of fossil fuels as well as the unsustainable use of land, through the reduction of native forests has increased the greenhouse gas emissions, contributing definitively to the rise in temperature on earth. In this scenario, two environmental factors, directly related to the physiology of crop production, are constantly being changed. The first change is the increase in the partial pressure of carbon dioxide (CO2), which directly affects photosynthetic efficiency and the associated metabolic processes. The other change is the temperature increase which affects all the physiological and metabolic processes mediated by enzymes, especially photosynthesis and respiration. Therefore, this review aims to discuss the main effects caused by increased CO2 pressure and the temperature rise in the physiology, productivity and post-harvest quality of plants with photosynthetic metabolism C3, C4 and CAM. Based on physiological evidence, the increased atmospheric CO2 concentration will benefit net photosynthesis, stomatal conductance and the transpiration of C3 plants, however in hot, dry and saline environments, the C4 and CAM species present an advantage by having low photorespiration. Studies show controversial conclusions about the productivity of C3 and C4 plants, and the quality of their fruits or grains under different CO2 concentrations or high temperatures. Thus, there is a need for more testing with C3 and C4 plants, besides of more researches with CAM plants, in view of the low number of experiments carried out in this type of plants.

Downloads

Não há dados estatísticos.

Biografia do Autor

Cristhyan Alexandre Carcia de Carvalho, Universidade Federal Rural do Semi-árido

Engenheiro Agrônomo, Mestre em Agronomia e Doutorando em Fitotecnia pela Universidade Federal Rural do Semi-árido

Ebenezer de Oliveira Silva, Embrapa Agroindústria Tropical

Engenheiro Agrônomo, Doutor em Fisiologia Vegetal

Marlos Alves Bezerra, Embrapa Agroindústria Tropical

Engenheiro Agrônomo, Doutor em Fisiologia Vegetal

Referências

AINSWORTH, E. A.; LONG, S. P. What have we learned from 15 years of free air CP2 enrichment (FACE)?: a meta-analysis of the responses of photosynthesis, canopy properties and plant production of rising CO2. New Phytology, n. 165, p. 351-372, 2005.

ARANJUELO, I. et al. The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants. Annals of Applied Biology, v. 146, p. 51-60, 2005.

BARBOSA, L. G. et al. Comportamento Fisiológico de Feijão-Caupi sob diferentes concentrações de CO2. In: SIMPÓSIO DE MUDANÇAS CLIMÁTICAS E DESERTIFICAÇÃO NO SEMIÁRIDO BRASILEIRO, 3., 2011, Juazeiro. Anais... Petrolina: Embrapa Semiárido, 2011. 1 CD-ROM.

BATTIST, D. S.; NAYLOR, R. I. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, Washington, v. 323, p. 240-244, 2009.

BRAGA, M. R. et al. Effects of elevated CO2 on the phytoalexin production of two soybean cultivars differing in the resistance to stem canker disease. Environmental and Experimental Botany, v. 58, p. 85-92, 2006.

BRANCO, R. B. F. et al. Enxertia e água de irrigação carbonatada no transporte de 15N e na produção do tomateiro. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11, n. 4, p. 374-379, 2007.

BRENNAN, W. J. et al. Our changing planet. The U.S. Climate Change Science Program for Fiscal year 2007. Washington: U. S. Global Change Research Program, 263 p. 2007.

BUCKERIDGE, M. S., MORTARI, L. C.; MACHADO, M. R. Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema? In Fenologia – Ferramenta para conservação e manejo de recursos vegetais arbóreos (REGO, G. M.; NEGRELLE, R. R. B.; MORELLATO, L. P. C.). ed. Embrapa Florestas, Colombo, p. 1-13, 2007.

BUCKERIDGE, M. S. et al. Respostas de plantas às mudanças climáticas globais. In Biologia das mudanças climáticas no Brasil (BUCKERIDGE, M. S. org.). ed. Rima, São Carlos, p.77-92, 2008.

BUCKLEY, T. N. The control of stomata by water balance. New Phytologist, v. 168, p. 275-292, 2005.

CROUS, K. Y.; WALTERS, M. B.; ELLSWORTH, D. S. Elevated CO2 concentration affects leaf photosynthesis–nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology, v. 28, p. 607-614, 2008.

D’ ALBUQUERQUE JUNIOR, B. S. et al. Qualidade física e química de frutos de meloeiro rendilhado cultivado sob diferentes épocas de aplicação de co2 via água de irrigação. Irriga, Botucatu, v. 12, n. 3, p. 273-280, jul./set. 2007.

DAMATTA, F. M. et al. Impacts of climate changes on crop physiology and food quality. Food Research International, v. 43, p. 1814-1823, 2010.

DAVEY, P. A. et al. Can fast growing trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environment, v. 29, p. 1235-1244, 2006.

DIAS FILHO, M. B. Degradação de pastagens: processos, causas e estratégias de recuperação. 3. ed. Belém: Embrapa Amazônia Ocidental, 2007. 190p.

FLORIDES, G. A.; CHRISTODOULIDES, P. Global warming and carbon dioxide through sciences. Environment International, v. 35, p. 390-401, 2009.

FRIEND, A. D. et al. Photosynthesis in global scale models. In Photosynthesis in silico (eds LAISKA, A.; NEDBAL, L.; GOVINDJEE), Springer, The Netherlands, p. 465-497, 2009.

FRIZZONE, J. A.; CARSOSO, S. da S.; REZENDE, R. Produtividade e qualidade de frutos de meloeiro cultivado em ambiente protegido com aplicação de dióxido de carbono e de potássio via água de irrigação. Acta Scientiarum Agronomy, Maringá, v. 27, n. 4, p. 707-717, out./dez. 2005a.

FRIZZONE, J. A.; D’ ALBUQUERQUE JUNIOR, B. S.; REZENDE, R. Aplicação de dióxido de carbono via água de irrigação em diferentes fases fenológicas da cultura do meloeiro cultivado em ambiente protegido. Acta Scientiarum Agronomy, Maringá, v. 27, n. 4, p. 667-675, out./dez. 2005b.

FUHRER, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, v. 97, p. 1-20, 2003.

FURLAN, R. A. et al. Dióxido de carbono aplicado via água de irrigação na cultura da alface. Horticultura Brasileira, Brasília, v. 19, p. 25-29, 2001.

GHINI, R. et al. Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases. Tropical plant pathology, Brasília, v. 37, n. 1, p. 5-24, jan./feb. 2012.

GRANDIS, A.; GODOI, S.; BUCKERIDGE, M. S. Respostas fisiológicas de plantas amazônicas de regiões alagadas às mudanças climáticas globais. Revista Brasileira de Botânica, v. 33, n. 1, p. 1-12, jan./mar. 2010.

GOMES, T. M. et al. Aplicação de doses de CO2 via água de irrigação na cultura da alface. Horticultura Brasileira, v. 23, p. 316-319, 2005.

HAN, J. H. et al. Effects of Elevated Carbon Dioxide and Temperature on Photosynthesis and Fruit Characteristics of ‘Niitaka’ Pear (Pyrus pyrifolia Nakai). Horticulture Environment Biotechnology, v. 53, n. 5, p. 357-361, 2012.

HÖGY, P. et al. Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biology, v. 11, p. 60-69, may, 2009.

IGNATOVA, L. K. et al. Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO2. Russian Journal Plant Physioly, v. 52, p. 158-164, 2005.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE IPCC. Climate Change 2007: The Physical Science Basis. Summary for Policy Makers, IPCC. Geneva, 2007.

ISLAM S, MATSUI T, YOSHIDA Y. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Scientia Horticulturae, v. 65, p. 137-149, 1996.

KIMBALL, B. A.; BERNACCHI, C. J. Evapotranspiration, canopy temperature, and plant water relations. In… J. NÖSBERGER; S. P. LONG, R. J.; NORBY, M.; STITT, G. R.; HENDREY, H. BLUM (Eds.), Managed ecosystems and CO2, p. 311-324, Berlin: Springer-Verlag, 2006.

KRISHNAN, P. et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment, v. 122, n. 2, p. 233-242, 2007.

KOSOBRYUKHOV, A. A. Activity of the photosynthetic apparatus at periodic elevation of CO2 concentration. Russian Journal Plant Physioly, v. 56, p. 8-16, 2009.

LEAKEY, A. D. B. et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, v. 140, p. 779-790, 2006.

LEAKEY, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, apr. 2009.

LIMA, M. A. de.; ALVES, B. J. R. Vulnerabilidades, impactos e adaptação à mudança do clima no setor agropecuário e solos agrícolas. Parcerias estratégicas, Brasília, DF, n. 27, dez. 2008.

LLOYD, J.; FARQUHAR, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society, v. 363, p. 1811-1817, 2008.

LONG, S. P. et al. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, v. 55, p. 591-628, 2004.

LONG, S. P. et al. Food for thought: lower-than expected crop yield stimulation with rising CO2 concentrations. Science, v. 312, p. 1918-1921, 2006.

LUO, Q. et al. Potential impact of climate change on wheat yield in South Australian. Agricultural and Forest Meteorology, Amsterdam, v. 132, p. 273-285, 2005.

MARENGO, J. A. Mudanças climáticas globais e seus efeitos sobre a biodiversidade: caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XXI. Brasília: Ministério do Meio Ambiente, 2006.

MARIN, F.; NASSIF, D. S. P. Mudanças climáticas e a cana-de-açúcar no Brasil: fisiologia, conjuntura e cenário futuro. Revista Brasileira Engenharia Agrícola Ambiental, v. 17, n. 2, p. 232-239, 2013.

MORGAN, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, v. 476, p. 202-205, 2011.

NORBY, R. J.; LUO, Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, v. 162, p. 281-293, 2004.

OSBORNE, C. P.; SACK, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society, B, n. 367, p. 583-600, 2012.

PAULA, F. L. M. de. et al. Produção de pimenta tabasco com aplicação de CO2, utilizando-se irrigação por gotejamento. Acta Scientiarum. Agronomy, Maringá, v. 33, n. 1, p. 133-138, 2011.

PIMENTEL, C. A. Relação da planta com a água. Seropédica, RJ: EDUR, 2004. 192 p.

PIMENTEL, C. Metabolismo de carbono de plantas cultivadas e o aumento de CO2 e de O3 atmosférico: situação e previsões. Bragantia, Campinas, v. 70, n. 1, p. 1-12, 2011.

PINTO, J. M.; FARIA, C. M. B. de; FEITOSA FILHO, J. C. Produtividade e qualidade de frutos do meloeiro, em função de nitrogênio e de CO2 aplicados via fertirrigação. Irriga, Botucatu, v. 11, n. 2, p. 198-207, abr./jun. 2006.

POLLEY, H. W.; MORGAN, J. A.; FAY, P. A. Climate change and agriculture paper: application of a conceptual framework to interpret variability in rangeland responses to atmospheric CO2 enrichment. Journal of Agricultural Science, v. 149, p. 1-14, 2011.

REDDY, A. R.; RASINENI, G. K.; RAGHAVENDRA, A. S. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, v. 99, n. 1, p. 46-57, jul. 2010.

RICHTER, G. M.; SEMENOV, M. A. Modelling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agricultural Systems, Barking, v. 84, p. 77-97, 2005.

SAGE, R. F. How terrestrial organism sense, signal, and response to carbon dioxide. Integrative and Comparative Biology, Mclean, v. 42, p. 469-480, 2002.

SHIMONO, H. et al. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, v. 60, p. 523-532, 2009.

SOLOMON, S. et al. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 996 p.

SOUZA, A. P. et al. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environment, v. 31, p. 1116-1127, 2008.

STORLIE, C. A.; HECKMAN, J, R. Bell pepper yield response to carbonated irrigation water. Journal of Plant Nutrition, v. 19, p. 1477-1484, 1996.

STRECK, N. A. Climate change and agroecosystems: the effect of elevated atmosferic CO2 and temperature on crop growth, development, and yield. Ciência Rural, v. 35, 734-744, 2005.

STRECK, N. A.; ALBERTO, C. M. Estudo numérico do impacto da mudança climática sobre o rendimento de trigo, soja e milho. Pesquisa Agropecuária Brasileira, Brasília, v. 41, n. 9, p. 1351-1359, set. 2006.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, 2013. 918 p.

TREMBLAY, A. et al. Greenhouse gas emissions, fluxes and processes: hydroelectric reservoirs and natural environments. Berlin, Springer, 2005.

VU, J. C. V.; ALLEN JR., L. H.; GESCH, R. W. Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Science, v. 171, p. 123-131, 2006.

VU, J. C. V; ALLEN JR., L. H. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. Journal of Plant Physiology, v. 166, p. 1141-1151, 2009.

YOON, S. T. et al. Growth and development of cotton (Gossypium hirsutum L.) in response to CO2 enrichment under two different temperature regimes. Environmental and Experimental Botany, v. 67, p. 178-187, 2009.

WAHID, A. et al. Heat tolerance in plants: an overview. Environmental and Experimental Botany, v. 61, p. 199-223, 2007.

WALTER, L. C. et al. Mudança climática e seus efeitos na cultura do arroz. Ciência Rural, v. 40, n. 11, nov. 2010.

WANG, X. W. et al. Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russian Journal of Plant Physiology, v. 55, p. 1021-4437, 2008.

WEISS, I.; MIZRAHI, Y.; RAVEH, E. Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Scientia Horticulturae, v. 123, p. 531–536, 2010.

Downloads

Publicado

31-03-2014

Edição

Seção

Revisão de Literatura