VARIABILIDADE GENOTÍPICA DE AMENDOIM EM RESPOSTA A ESTRESSE HÍDRICO BASEADA EM DESCRITORES BIOQUÍMICOS

Autores

  • Gerckson Maciel Rodrigues Alves Department of Agricultural Science, Universidade Estadual da Paraiba, Campina Grande, PB
  • Jacqueline Wanessa de Lima Pereira Department of Agriculture, Universidade Federal Rural de Pernambuco, Recife, PE
  • Lucas Nunes da Luz Rural Development Institute, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE
  • Liziane Maria de Lima Biotechnology Laboratory, Embrapa Algodão, Campina Grande, PB
  • Roseane Cavalcanti dos Santos Biotechnology Laboratory, Embrapa Algodão, Campina Grande, PB

DOI:

https://doi.org/10.1590/1983-21252016v29n302rc

Palavras-chave:

Arachis hypogaea L. Enzimas antioxidativas. Solutos orgânicos. Tolerância à seca.

Resumo

Sete descritores bioquímicos foram utilizados para estimar a variabilidade genotípica de linhagens de amendoim submetidas a estresse hídrico moderado. Seis genótipos, sendo quatro linhagens e duas cultivares, foram cultivados em vasos, cada um contendo duas plantas e mantidas em casa de vegetação. Aos 15 dias após a emergência, procedeu-se a diferenciação dos tratamentos: Controle, as plantas mantidas com rega diariamente; Estresse, as plantas submetidas à suspensão total de rega durante 15 dias. O delineamento experimental foi inteiramente casualizado, com esquema fatorial 6 x 2 (genótipos x tratamentos hídricos), com cinco repetições. As variáveis bioquímicas avaliadas foram: catalase (CAT), ascorbato peroxidase (APX), guaiacol peroxidase (GPX), prolina livre, carboidratos totais, proteínas solúveis e aminoácidos. Baseado nos resultados das análises bioquímicas e de estimativa da variabilidade genotípica, a prolina demonstrou ser o descritor mais adequado para seleção de genótipos tolerantes ao estresse hídrico, contribuindo para indicar as linhagens L81V e L108V como mais promissoras, para um programa de melhoramento visando tolerância à seca.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gerckson Maciel Rodrigues Alves, Department of Agricultural Science, Universidade Estadual da Paraiba, Campina Grande, PB

Pós-graduação em Ciências Agrárias

Jacqueline Wanessa de Lima Pereira, Department of Agriculture, Universidade Federal Rural de Pernambuco, Recife, PE

Departamento de Pós-graduação em Biotecnologia, Rede Nordeste de Biotecnologia (Renorbio), Universidade Federal Rural de Pernambuco, Recife, PE

Lucas Nunes da Luz, Rural Development Institute, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE

Departamento de Agronomia, Universidade Federal do Cariri, Crato, CE

Liziane Maria de Lima, Biotechnology Laboratory, Embrapa Algodão, Campina Grande, PB

Laboratório de Biotecnologia, Embrapa Algodão, Campina Grande, PB

Roseane Cavalcanti dos Santos, Biotechnology Laboratory, Embrapa Algodão, Campina Grande, PB

Setor de Biotecnologia e Melhoramento de plantas oleaginosas e fibrosas

Referências

AKCAY, U. C. et al. Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regulation, Netherlands, v. 61, n. 1, p. 21-28, 2010.

APEL, K.; HIRT, H. Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, Palo Alto, v. 55, p. 373-399, 2004.

AZEVEDO NETO, A. D. et al. Physiological and biochemical responses of peanut genotypes to water deficit, Journal of Plant Interactions, Dordrecht, v. 5, n. 1, p. 1-10, 2009.

BATES, L. S. Rapid determination of free proline for water-stress studies. Plant and Soil, Dordrecht, v. 39, n. 1, p. 205-207, 1973.

BEERS JUNIOR, R. F.; SIZER, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxidase by catalase. Journal of Biological Chemistry, Rockville Pike, v. 195, n. 2, p. 133-140, 1952.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, San Diego, v. 72, n. 1-2, p. 248-254, 1976.

CRUZ, C.D. Programa Genes - Biometria. 1. ed. Viçosa, MG: Editora UFV, 2006. v. 1. 382 p.

DUBOIS, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, Washington, v. 28, n. 3, p. 350-356, 1956.

FAROOQ, M. et al. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, Les Ulis Cedex A, v. 29, n. 1, p. 185–212, 2009.

FOYER, C. H.; NOCTOR, G. Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, Rockville, v. 17, n. 7, p. 1866-1875, 2005.

GILL, T. et al. Over-expression of Potentilla superoxide dismutase improves salt stress tolerance during germination and growth in Arabidopsis thaliana. Journal of Plant Genetic & Transgenics, West Lafayette, v. 1, n. 1, p. 1-10, 2010.

GOMES, L. R. et al. Adaptabilidade e estabilidade fenotípica de genótipos de amendoim de porte ereto. Pesquisa Agropecuária Brasileira, Brasília, v. 42, n. 7, p. 985-989, 2007.

GRACIANO, E. S. A. et al. Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 15, n. 8, p. 794–800, 2011.

KARUPPANAPANDIAN, T. et al. Chromium-induced accumulation of peroxide content, stimulation of antioxidative enzymes and lipid peroxidation in green gram 867 (Vigna radiata L. cv. Wilczek) leaves. African Journal of Biotechnology, Abraka, v. 8, n. 3, p. 475-479, 2009.

MAFAKHERI, A. et al. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, Queensland, v. 4, n. 8, p. 580-585, 2010.

MAIA, P. S. P. et al. Conteúdo relativo de água, teor de prolina e carboidratos solúveis totais em folhas de duas cultivares de milho submetidas a estresse hídrico. Revista Brasileira de Biociências, Porto Alegre, v. 5, n. S2, p. 918-920, 2007.

MOLINARI, H. B. C. et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, Lund, v. 130, n. 2, p. 218-229, 2007.

MUNNE-BOSCH, S.; ALEGRE, L. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, Collingwood, v. 31, n. 3, p. 203-216, 2004.

MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and Environment, Malden, v. 25, n. 2, p. 239-250, 2002.

NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidases in spinach chloroplast. Plant Cell Physiology, Quioto, v. 22, n. 5, p. 867-880, 1981.

NEPOMUCENO, A. L. et al. Tolerância à seca em plantas: mecanismos fisiológicos e moleculares. Biotecnologia, Ciência e Desenvolvimento, Brasília, v. 4, n. 23, p. 12-18, 2001.

NOGUEIRA, R. J. M. C. Efeitos do déficit hídrico no comportamento fisiológico de quatro cultivares de cana-de-açúcar (Saccharum sp.) adubadas ou não, com nitrogênio mineral, 1987. 156 p. Dissertação (Mestrado em Botânica: Área de Concentração em Produção vegetal) - Universidade Federal de Pernambuco, Recife, 1987.

NOGUEIRA, R. J. M. C. et al. Comportamento estomático e potencial da água da folha em amendoim cv. BRS 151 L7 submetido a estresse hídrico. Revista Brasileira de Oleaginosas e Fibrosas, Campina Grande, v. 10, n. 1/2, p. 985-991, 2006.

NOGUEIRA, R. J. M. C.; SANTOS, R. C. Alterações fisiológicas no amendoim submetido ao estresse hídrico. Revista Engenharia Agrícola, Campina Grande, v. 4, n. 1, p. 41-45, 2000.

PEREIRA, J. W. L. et al. Mudanças bioquímicas em genótipos de amendoim submetidos a déficit hídrico moderado. Revista Ciência Agronômica, Fortaleza, v. 43, n. 4, p. 766-773, 2012.

PEREIRA, J. W. L. et al. Cluster analysis to select peanut drought tolerance lines. Australian Journal of Crop Science, Queensland, v. 9, n. 11, p. 1095-1105, 2015.

SANKAR, C. et al. Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces, Amsterdam, v. 60, n. 2, p. 229-235, 2007.

SANTOS, R. C.; GODOY, J. I.; FÁVERO, A. P. Melhoramento do Amendoim. In: SANTOS, R. C. (Ed.). O Agronegócio do Amendoim no Brasil. Campina Grande: Embrapa Algodão, 2005, cap. 4, p. 124-192.

SANTOS, R. C. et al. BRS Havana: nova cultivar de amendoim de pele clara. Pesquisa Agropecuária Brasileira, Brasília, v.41, p.1337-1339, 2006.

SANTOS, R. C. et al. Produtividade de linhagens avançadas de amendoim em condições de sequeiro no Nordeste brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 14, n. 6, p. 589-593, 2010.

SANTOS, R. C. et al. Variabilidade de progênies F2 de amendoim geradas por meio de seleção de genitores ISSR-divergentes. Revista Ciência Agronômica, Fortaleza, v. 44, n. 3, p. 578-586, 2013.

SHARMA, P. et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, Cairo, v. 2012, n. ID 217037, p. 1-26, 2012.

URBANEK, H.; KUZNIAK-GEBAROWSKA, E.; HERKA, K. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologiae Plantarum, Heidelberg, v. 13, n. 1, p. 43-50, 1991.

WASEEM, M. et al. Mechanism of drought tolerance in plant and its management through different methods. Continental Journal Agricultural Science, Akure, v. 5, n. 1, p. 10-25, 2011.

YEMM, E. W.; COKING, E. C.; RICKETTS, R. E. The determination of amino-acids with ninhydrin. Analyst, Cambridge, v. 80, n. 948, p. 209-214, 1955.

Downloads

Publicado

20-07-2016

Edição

Seção

Agronomia