PREDIÇÃO DE VALORES FENOTÍPICOS E GENOTÍPICOS VIA RR-BLUP/GWS E REDES NEURAIS
DOI:
https://doi.org/10.1590/1983-21252018v31n301rcPalavras-chave:
Melhoramento genético. Correlação. Marcadores moleculares.Resumo
A seleção genômica ampla (Genome Wide Selection - GWS) utiliza simultaneamente o efeito de milhares de marcadores cobrindo todo o genoma para predizer o valor genético genômico dos indivíduos no processo de seleção. Os possíveis benefícios de seu uso são a redução do ciclo de melhoramento, propiciando maior ganho por unidade de tempo e diminuição de custos. O sucesso da GWS está atrelado a escolha do método de predição dos efeitos dos marcadores. Assim, neste trabalho, visou-se aplicar as redes neurais artificiais (Artificial Neural Networks - ANNs), com a finalidade de predizer os valores genéticos genômicos (Genomic Breeding Values - GEBVs) baseado na estimação dos efeitos dos marcadores comparados a regressão de cumeeira – melhor preditor não viesado/seleção genômica ampla (Ridge Regression – Best Linear Unbiased Predictor/Genome Wide Selection – RR-BLUP/GWS). Foram efetuadas simulações por meio do software R, fornecendo as correlações referentes às ANNs e a RR-BLUP/GWS. Os métodos de predição foram avaliados utilizando correlações entre o valor fenotípico e valor genotípico com o valor genético genômico predito. Os resultados demonstraram superioridade das ANNs na predição dos GEBVs nos cenários com maior e menor densidade de marcadores, paralelo a níveis mais altos de desequilíbrio de ligação e maior herdabilidade.
Downloads
Downloads
Publicado
Edição
Seção
Licença
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).