ESTIMATIVAS DE ATRIBUTOS DE FÍSICOS E QUÍMICOS DE SOLO POR MEIO DE REDES NEURAIS ARTIFICIAIS
DOI:
https://doi.org/10.1590/1983-21252018v31n320rcPalavras-chave:
Inteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.Resumo
O estudo das propriedades físicas e químicas do solo é um procedimento de custo e tempo relativamente elevado. Na busca de alternativas para predizer esses atributos a partir de um número menor de amostras do solo, o uso de Redes Neurais Artificiais (RNA) tem sido apontado como uma técnica computacional com grande capacidade de resolver problemas por meio da experiência, e possuem a capacidade de aquisição e posterior aplicação deste conhecimento. Esse trabalho teve por objetivo utilizar a RNA para estimar os atributos físicos e químicos de solo. Os dados utilizados foram provenientes da análise física e química de solo, coletados em 120 pontos amostrais, os quais foram submetidos à análise descritiva, análise geoestatística, treinamento e análise das RNAs. Na análise geoestatística, para cada atributo do solo, foi verificado o modelo de semivariograma que apresentou melhor ajuste ao modelo experimental, e como método de interpolação foi usada técnica da krigagem ordinária. As RNAs foram treinadas, selecionadas considerando a assertividade no mapeamento dos padrões considerados e utilizadas na estimativa de todos dos atributos de solo. O erro médio de cada estimativa obtida pela técnica da krigagem ordinária foi comparado com o erro médio da estimativa obtida pela RNA e, posteriormente foram comparadas com os valores originais por meio do teste-t de Student. Os resultados mostram que a técnica de RNAs apresenta assertividade compatível à krigagem ordinária. O uso da técnica de RNA apresentou-se promissora para obter estimativas de atributos de solo empregando um número menor de amostras de solo.Downloads
Referências
ANGELICO, J. C.; SILVA, I. N. Redes neurais artificiais aplicadas na estimativa da variabilidade de atributos do solo, SP. Revista Científica FACOL/ISEOL, São Paulo, v. 1, n. 1, p. 9-20, 2014.
BITTAR, R. D. Redes neurais artificiais aplicadas à modelagem da variabilidade espacial de atributos físico-químicos de solos do cerrado. 2016. 112 f. Dissertação (Mestrado em Engenharia Agrícola: Área de Concentração em Engenharia de Sistemas Agroindustriais) - Universidade Estadual de Goiás, Anápolis, 2016.
CALDERANO FILHO, B. et al . Artificial neural networks applied for soil class prediction in mountainous landscape of the Serra do Mar. Revista Brasileira de Ciências do Solo, Viçosa, v. 38, n. 6, p. 1681-1693, 2014.
CAMBARDELLA, C. A. et al. Field-scale variability of soil properties in central lowa soils. Soils Science Society of America Journal, Madison, v. 58, n. 5, p. 1501-1511, 1994.
DIAS, M. J. et al. Probabilidade de ocorrência dos atributos químicos em um latossolo sob plantio direto. Revista Caatinga, Mossoró, v. 28, n. 4, p. 181-189, 2015.
DONAGEMA, G. K. et al. Manual de métodos de análise de solos. 2. ed. Rio de Janeiro, RJ: Embrapa Solos, 2011. 230 p.
HAYKIN, S. S. Redes neurais: princípios e práticas. 2. ed. Porto Alegre, RS: Bookman, 2001. 900 p.
ISAAKS, E. H.; SRIVASTAVA, R. M. An introduction to applied geostatistics. New York: Oxford University Press, 1989. 561 p.
MONTANARI, R. et al. The use of scaled semivariograms to plan soil sampling in sugarcane fields. Precision Agriculture, Dordrecht, v. 13, n. 5, p. 542-552, 2012.
MOLIN J. P.; CASTRO C. N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Revista Scientia Agricola, Piracicaba, v. 65, n. 6, p. 567-573, 2008.
NOROUZI, M. et al. Predição da qualidade e quantidade do trigo de sequeiro utilizando rede neural artificial usando características de terreno e solo. Acta Agriculturae Scandinavica. Section B. Soil and Plant Science, Stockholm, v. 60, n. 4, p. 341-353. 2010.
OLIVEIRA, E. L. V.; FERNANDES, H. C.; TEIXEIRA, M. M. Variabilidade espacial das propriedades físicas de um latossolo amarelo eutrófico da região serrana do estado do Espírito Santo. Enciclopédia Biosfera, Goiânia. v. 7, n. 13, p. 1027-1042, 2011.
REIS, J. S. et al. Determinação de zonas de manejo para adubação nitrogenada em lavoura de tomate industrial. Revista Agrotecnologia, Anápolis, v. 4, n. 2, p. 68-84, 2013.
RUSSEL, S.; NORVIG, P. Inteligência artificial. 3. ed. Rio de Janeiro, RJ: Campus, 2013. 1016 p.
SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 3. ed. Brasília, DF: Embrapa, 2013b. 353 p.
SANTOS, M. C. N. et al. Spatial Continuity of soil attributs in na Atlantic Forest remmant in the Mantiqueira Range, MG. Ciência Agrotecnologia, Lavras, v. 37, n. 1, p. 68-77, 2013a.
SEIDEL, E. J.; OLIVEIRA M. S. Proposta de um teste de hipótese para existência de dependência espacial em dados geoestatísticos. Boletim de Ciências Geodésicas, Curitiba, v. 20, n. 4, p. 750-764, 2014.
SILVA NETO, S. P. et al. Variabilidade espacial da biomassa da forragem e taxa de lotação animal em pastagem de capim Marandu. Revista Agrogeoambiental, Pouso Alegre, v. 8, n. 2, p. 119-130, 2016.
SOUZA, Z. M. et al. Número de amostras na análise geoestatística e na krigagem de mapas de atributos do solo. Ciência Rural, Santa Maria, v. 44, n. 2, p. 261-268, 2014.
YAMAMOTO, J. K.; LANDIM, P. M. B. Geoestatística: conceitos e aplicações. 1. ed. São Paulo, SP: Oficina de Textos, 2013. 215 p.
WARRICK, A. W.; NIELSEN, D. R. Spatial variability of soil physical in the field. In: HILLEL, D. (Ed.). Applications of soil physics. New York: Academic Press, 1980. cap. 13, p. 319-344.
Downloads
Publicado
Edição
Seção
Licença
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).