ENRIQUECIMENTO E BIODISPONIBILIDADE DE ELEMENTOS TÓXICOS EM ÁREAS DE PRODUÇÃO INTENSIVA DE HORTALIÇAS

Autores

  • Tainara Ferrugem Franco Soil Departament, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ https://orcid.org/0000-0003-4348-5928
  • Erica Souto Abreu Lima Soil Departament, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ https://orcid.org/0000-0003-4140-3634
  • Nelson Moura Brasil do Amaral Sobrinho Soil Departament, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ https://orcid.org/0000-0002-5053-7338
  • Margarida Goréte Ferreira do Carmo Departament of Plant Science, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ https://orcid.org/0000-0002-0955-091X
  • Farley Alexandre da Fonseca Breda Soil Departament, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ https://orcid.org/0000-0002-8114-1387

DOI:

https://doi.org/10.1590/1983-21252020v33n114rc

Palavras-chave:

Agricultura de montanha. Contaminação. Metais pesados.

Resumo

O cultivo de hortaliças se destaca pelo uso intensivo de insumos agrícolas, devido à exigência nutricional em curto período de tempo e alta susceptibilidade a pragas e doenças. Este estudo teve como objetivo identificar os principais fatores responsáveis pelas alterações nos teores pseudototais e biodisponíveis de Cd, Cu, Cr, Mn, Ni, Pb e Zn nos solos sob cultivo intensivo de hortaliças. Para tal, no ano de 2017, foram coletadas amostras de terra em 146 pontos no município de Petrópolis-RJ. As amostras foram coletadas na profundidade de 0-20 cm, em propriedades familiares com cultivo de hortaliças em pleno período de produção. Para determinação dos teores pseudototais dos elementos tóxicos foi utilizada a metodologia da EPA 3050B. O procedimento de fracionamento geoquímico foi realizado com base no método BCR. Também foram calculados os índices de poluição. Em geral, as áreas produtoras de hortaliças apresentaram baixa contaminação por Cu, Zn, Pb, Mn e Ni, exceto para Cd que apresentou severa contaminação. Nas áreas que apresentam os menores valores de declividade, houve aumento nos teores da maioria dos elementos tóxicos, refletindo a influência do relevo. De maneira geral, o manejo inadequado do solo, a aplicação intensiva de adubação fosfatada, potássica e orgânica, assim como, o revelo, foram as variáveis que mais influenciaram no enriquecimento e biodisponibilidade de elementos tóxicos no solo.

 

Downloads

Não há dados estatísticos.

Referências

AL-HWAITI, M. S., AL-KHASHMAN, O. A. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environmental Geochemistry and Health, 37: 287–304, 2015.

AZZI, V. et al. Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries: Soil. CLEAN - Soil, Air, Water, 45: 1-8, 2017.

BARBER, S. A. Soil nutrient bioavailability: a mechanistic approach. 2. ed. New York, NY: John Wiley & Sons, 1995. 414 p.

BEVILACQUA, J. E. et al. Extração seletiva de metais pesados em sedimentos de fundo do Rio Tietê, São Paulo. Química Nova, 32: 26-33, 2009.

BIGALKE, M. et al. Accumulation of cadmium and uranium in arable soils in Switzerland. Environmental Pollution, 221: 85–93, 2017.

BIONDI, C. M. et al. Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35: 1057-1066, 2011.

CHEN, C. S. et al. The Ability of Immobilized Bacterial Consortia and Strains from River Biofilms to Degrade the Carbamate Pesticide Methomyl”. International Journal of Environmental Science and Technology, 12: 2857–2866, 2015.

CODLING, E. E.; CHANEY, R. L.; MULCHI, C. L. Effects of Broiler Litter Management Practices on Phosphorus, Copper, Zinc, Manganese, and Arsenic Concentrations in Maryland Coastal Plain Soils. Communications in Soil Science and Plant Analysis, 39: 1193–1205, 2008.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL - CETESB. Manual de gerenciamento de áreas contaminadas. 2. ed. São Paulo, SP: CETESB, 2001. 389 p.

DONAGEMMA, G. et al. Manual de métodos de análise de solos. 2. ed. Rio de Janeiro, RJ: Embrapa Solos, 2011. 230 p. (Documentos, 132).

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - FAO. Building climate resilience for food security and nutrition. Rome: FAO, 2018.

FREIRE, L. R. et al. Manual de calagem e adubação do Estado do Rio de Janeiro. 1. ed. Brasília, DF: Embrapa, 2013. 430 p.

JALALI, M.; HEMATI, N. Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy and Water Environment, 11: 299–309, 2013.

KIEHL, E. J. Manual de edafologia: relação solo planta. 1. ed. São Paulo, SP: Agronômica Ceres, 1979. 262 p.

KONG, W. et al. Removal of heavy metals from aqueous solutions using acrylic-modified sugarcane bagasse-based adsorbents: equilibrium and kinetic studies. Bioresources, 9: 3184–3196, 2014.

LIMA, E. S. A. et al. Soil heavy metal content on the hillslope region of Rio de Janeiro, Brazil: reference values. Environmental Monitoring and Assessment, 190: 1-11, 2018.

MILLIGAN, G. W., COOPER, M. C. An examination of procedures for determining the number of cluster in a data set. Psychometrika, 50: 159-179, 1985.

NASCIMENTO, C. W. A. DO; FONTES, R. L. F.; MELICIO, A. C. F. D. Copper availability as related to soil copper fractions in oxisols under liming. Scientia Agricola, 60: 167–173, 2003.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY – NIST. Certification of Three NIST Renewal Soil Standard Reference Materials for Element Content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. p. 39, 2010.

OLIVEIRA, F. C.; MATTIAZZO, M. E. Mobilidade de metais pesados em um Latossolo Amarelo distrófico tratado com lodo de esgoto e cultivado com cana-de-açúcar. Scientia Agricola, 58: 807–812, 2001.

OWENS, P. Conceptual models and budgets for sediment management at the river basin scale (12 pp). Journal of Soils and Sediments, 5: 201–212, 2005.

PARDO, T.; CLEMENTE, R.; BERNAL, M. P. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere, 84: 642–650, 2011.

ROSOLEN, V. et al. Qualidade dos sedimentos no rio Uberabinha (Uberlândia, MG) e implicações ambientais. Revista Brasileira de Geociências, 39: 151–159, 2009.

ROVEDA, L. F. et al. Composto orgânico com altos teores de níquel e sua biodisponibilidade no sistema solo planta. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, 18: 819-825, 2014.

SANTOS, J. S.; SOUZA, F. M.; SANTOS, M. L. P. Distribuição de Zn, Pb, Ni, Cu, Mn e Fe nas frações do sedimento superficial do Rio Cachoeira na região sul da Bahia, Brasil. Química Nova, 36: 236-239, 2013.

SAS INSTITUTE INC. SAS Online Doc 9,2. Cary, NC: SAS Institute Inc. 2010.

SILVA, J. A. M. F. et al. Mitigation of heavy metal contamination in soil via successive pig slurry applications. Soil and Sediment Contamination: An International Journal, 26: 675-690, 2017.

SOARES, M. R. Coeficiente de distribuição (Kd) de metais pesados em solos do estado de São Paulo. 2004. 202 f. Tese (Doutorado em Agronomia: Área de Concentração em Solos e Nutrição de Plantas) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2004.

SOUSA, F. F. Fatores de transferência de metais pesados do solo para plantas de tomateiro cultivadas na região de Nova Friburgo, RJ. 2017. 130 f. Dissertação (Mestrado em Fitotecnia: Área de Concentração em Produção Vegetal) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2017.

SOUZA, C. C. B. et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting. Journal of Environmental Management, 247: 291-298, 2019.

STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. 2. ed. New York, NY: John Wiley & Sons, 1994. 512 p.

TESTA, M. Óleo de Cinnamomum zeylanicum no controle de Alphitobius diaperinus e ecotoxicidade da cama de aves contaminada com inseticidas em solos de Santa Catarina. 2018. 104 f. Dissertação (Mestrado em Zootecnia: Área de Concentração em Ciência e Produção Animal) – Universidade do Estado de Santa Catarina, Chapecó, 2018.

TRANI, P. E. et al. Avaliação da produtividade e qualidade comercial de quatro genótipos de tomate do tipo “cereja”. In: WORKSHOP [DE] TOMATE NA UNICAMP: PESQUISA E TENDÊNCIAS, 2003, Campinas. Anais... Campinas, SP: UNICAMP, 2003. p. 82-83.

URE, A. M. et al. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51: 135–151, 1993.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - USEPA. Method 3050B: acid digestion of sediments, sludges, and soils. 2. ed. Washington, DC: USEPA, 1996. 12 p.

VIEIRA, L. P. Acumulação de nutrientes e metais pesados em solo, água e hortaliças em áreas cultivadas com olerícolas no agreste de Pernambuco. 2011. 114 f. Dissertação (Mestrado em Ciência do Solo: Área de Concentração em Solos e Meio Ambiente) – Universidade Federal de Pernambuco, Recife, 2011.

WU, S. et al. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148: 71–78, 2015.

ZOFFOLI, H. J. O. et al. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil’s Southern Region. Environmental Monitoring and Assessment, 185: 2423-2437, 2013.

Downloads

Publicado

14-02-2020

Edição

Seção

Agronomia