DINÂMICA DA PRODUÇÃO DE RAÍZES FINAS EM FLORESTA TROPICAL SAZONALMENTE SECA ANTE O REGIME PLUVIOMÉTRICO

Autores

DOI:

https://doi.org/10.1590/1983-21252020v33n218rc

Palavras-chave:

Caatinga. Semiárido. Regime pluviométrico. Profundidade efetiva.

Resumo

Florestas tropicais sazonalmente secas (FTSS) geralmente apresentam estações secas com oito ou mais meses. Frente ao questionamento de resiliência das FTSS às mudanças climáticas desenvolveu-se essa pesquisa objetivando investigar a dinâmica da biomassa de raízes finas ante o regime pluviométrico. O experimento teve início ao final da estação úmida (jul./2015), quando as raízes finas foram caracterizadas e implantados os núcleos de crescimento interno. A dinâmica temporal das raízes finas foi monitorada na camada de 0-30 cm e as subcamadas de 0-10, 10-20 e 20-30 cm por seis coletas no período de nov./2015 a jul./2017. Os indicadores considerados na investigação foram: biomassa de raízes finas, comprimento de raízes finas, comprimento específico de raízes finas, e diâmetro médio das raízes finas. A significância da dinâmica das raízes no tempo e no espaço foram testadas pelo teste Kruskal-Wallis (p < 0,05). Após a separação, as raízes finas (Ø < 2 mm) foram secas em estufa (65 °C) até massa constante. O comprimento das raízes foi determinado pelo software Giaroots.  A biomassa de raízes finas (Ø < 2 mm) em jul./2015 foi de 7,7 ± 5,0 Mg ha-¹ e o comprimento foi de 5,0 ± 3,2 km m-2. A dinâmica das raízes finas em FTSS é fortemente limitada nos períodos secos, ocorrendo perda de biomassa e do comprimento de raízes finas em todas as camadas. A produção de raízes finas ocorre fundamentalmente nas estações chuvosas, com uma rápida resposta de desenvolvimento do sistema radicular à ocorrência de precipitações, principalmente no seu comprimento.

 

Downloads

Não há dados estatísticos.

Referências

ADIKU, S. et al. On the simulation of root water extraction: examination of a minimum energy hypothesis. Soil Science, 165: p. 226-236, 2000.

ALLEN, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 2: 1-15, 2017.

ANDRADE, E. M. et al. Uncertainties of the rainfall regime in a tropical semi-arid region: the case of the State of Ceará. Revista Agro@mbiente On-line, 10: 88-95, 2016.

ANDRADE, E. M. et al. Water as capital and its uses in the Caatinga. In: SILVA, J. M. C.; LEAL, I. R.; TABARELLI, M. (Eds.) Caatinga: the largest tropical dry forest region in South America. Berlin: Spring, 2017. v. 1, cap. 10, p. 281-302.

ANDREASSON, F. et al. Comparison of ingrowth cores and ingrowth meshes in root studies: 3 years of data on Pinus pinaster and its understory. Trees, 30: 555-570, 2016.

AQUINO, D. N. et al. Belowground carbon and nitrogen on a thinned and un-thinned seasonally dry tropical forest. American Journal of Plant Sciences, 8: 2083-2100, 2017.

ASSEFA, D. et al. Fine root dynamics in afromontane forest and adjacent land uses in the northwest ethiopian highlands. Forests, 8: 1- 21, 2017.

BEJARANO, M. D. et al. Effects of soil compaction and light on growth of Quercus pyrenaica Willd.(Fagaceae) seedlings. Soil and Tillage Research, 110: 108-114, 2010.

CASTANHO, D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environmental Research Letters, 15: 1-11, 2020.

CHIMUNGU, J. G.; LOADES, K. W.; LYNCH, J. P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays). Journal of Experimental Botany, 66: 3151-3162, 2015.

COSTA, C. A. G. et al. Spatial behaviour of soil moisture in the root zone of the Caatinga biome. Revista Ciência Agronômica, 44: 685-694, 2013.

COSTA, T. L. et al. Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil. Plant and Soil, 378: 113-123, 2014.

ERKTAN, A.; MCCORMACK, M. L.; ROUMET, C. Frontiers in root ecology: recent advances and future challenges. Plant and Soil, 424: 1-9, 2018.

FRESCHET, G. T. et al. Climate, soil and plant functional types as drivers of global fine root trait variation. Journal of Ecology, 105: 1182-1196, 2017.

GALKOVSKYI, T. et al. GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biology, 12: 2-12, 2012.

IVERSEN, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist, 215: 15-26, 2017.

KATAYAMA, A. et al. Estimating fine root production from ingrowth cores and decomposed roots in a bornean tropical rainforest. Forests, 10:1-13, 2019.

MAASS, M.; BURGOS, A. Water dynamics at the ecosystem level in Seasonally Dry Tropical Forests. In: DIRZO, R. et al. (Eds.). Seasonally Dry Tropical Forests: ecology and conservation. Washington, DC: Island Press, 2011. v. 1, cap. 9, p. 141-156.

MENDES, M. M. S. et al. Ecophysiology of deciduous plants grown at different densities in the semiarid region of Brazil. Theoretical and Experimental Plant Physiology, 25: 94-105, 2013.

METCALFE, D. B. et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311: 189-199, 2008.

MURPHY, P. G.; LUGO, A. E. Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17: 67-88, 1986.

PEREIRA JÚNIOR, L. R. et al. Carbon stocks in a tropical dry forest in Brazil. Revista Ciência Agronômica, 47: 32-40, 2016.

PÉREZ-HARGUINDEGUY, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61: 167-234, 2013.

PERSSON, H. Å. The distribution and productivity of fine roots in boreal forests. Plant and Soil, 71: 87-101, 1983.

PINHEIRO, E. A. R.; COSTA, C. A. G.; ARAÚJO, J. C. Effective root depth of the Caatinga biome. Journal of Arid Environments, 89: 1-4, 2013.

PINNO, D. B. et al. Fine root dynamics of trembling aspen in boreal forest and aspen parkland in central Canada. Annals of Forest Science, 67: 1-6, 2010.

ROSADO, B. H. P. et al. Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotropica, 11: 203-209, 2011.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.

SANTOS, M. G. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology, 26: 83–99, 2014.

SOLLY, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nature Communications, 9: 1-8, 2018.

THAKUR, T. K. et al. Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. Journal Forest Resource, 30: 157-170, 2019.

WIJK, M. T. V. Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecology and Biogeography, 20: 331–342, 2011.

Downloads

Publicado

22-05-2020

Edição

Seção

Ciências Florestais