DISPONIBILIDADE DE FÓSFORO NO SOLO INCUBADO COM BIOCARVÃO: ESTUDO DE ADSORÇÃO

Autores

  • Josely Dantas Fernandes Department of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0002-1297-6962
  • Lúcia Helena Garófalo Chaves Department of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0002-9905-2315
  • Edilma Rodrigues Bento Dantas Department of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-9663-1787
  • Gilvanise Alves Tito Department of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-7816-1830
  • Hugo Orlando Carvalho Guerra Department of Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-5468-5509

DOI:

https://doi.org/10.1590/1983-21252022v35n121rc

Palavras-chave:

Isotermas de adsorção. Cama de aviário. Cinética. Propriedades físico-quimicas.

Resumo

Considerando as perdas de fósforo (P) no solo pelo processo de adsorção e que o uso do biocarvão parece promissor do ponto de vista agrícola, objetivou-se com este estudo avaliar o processo de adsorção de P pelo solo Argissolo incubado com diferentes doses de biocarvão através de estudo cinético e isotérmico. O experimento foi realizado com biocarvão de cama de aviário pirolisado a 350 °C. O Argissolo foi incubado com doses crescentes de biocarvão, de 0,0 a 61,95 t ha-1. Após 60 dias, foram avaliadas a taxa de adsorção de fósforo, e cinética e isotermas de adsorção. Os resultados mostraram que o solo apresentou a maior capacidade de adsorção de fósforo (1,105 mg g-1). O biocarvão não foi um bom adsorvente de P; independente das doses aplicadas, liberou P para a solução de equilíbrio. O modelo de Langmuir foi o melhor para descrever a adsorção de P. A cinética de adsorção de P se ajustou bem ao modelo de pseudo-segunda ordem, mostrando que a adsorção é controlada quimicamente. Esses resultados sugerem que o biocarvão pode aumentar a disponibilidade de P no solo, limitando a adsorção, portanto, pode ser usado como fertilizante e/ou condicionador de solo.

 

Downloads

Não há dados estatísticos.

Referências

ALVAREZ, V. V. H.; FONSECA, D. M. Definição de doses de fósforo para determinação da capacidade máxima de adsorção de fosfatos e para ensaios em casa de vegetação. Revista Brasileira Ciência do Solo, 14: 49-55, 1990.

BAI, S. H. et al. Soil and foliar nutrient and nitrogen isotope composition (delta N-15) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environmental Science and Pollution Research, 22: 3803–3809, 2015.

BRAGA, J. M.; DEFELIPO, B. V. Relações entre formas de fósforo inorgânico, fósforo disponível e material vegetal em solos sob vegetação de cerrado: I - Trabalhos de laboratório. Ceres, 19: 124-136, 1972.

CUI, H. et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments, 11: 1135–1141, 2011.

FERNANDES, J. D. et al. Soil chemical amendments and the macronutrients mobility evaluation in Oxisol treated with biochar. Journal of Agricultural Science, 10: 238-247, 2018.

FOO, K. Y.; HAMEED, B. H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156: 2-10, 2010.

GHAEDI, M.; HASSANZADEH, A.; KOKHDAN, S. N. Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red s and morin. Journal of Chemical & Engineering Data, 56: 2511–2520, 2011.

GUO, M.; SHEN, Y.; HE, Z. Poultry litter-based biochar: preparation, characterization, and utilization. In: HE, Z. (Ed.). Applied research of animal manure: challenges and opportunities beyond the adverse environmental concerns. New York, NY: Nova Science, 2012. v .1, cap. 8, p. 169-202.

GLASER, B.; LEHR, V. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9: 1-9, 2019.

HO,Y. S.; WASE, D.A.J.; FORSTER, C. F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, 17: 71-77, 1996.

JUNG, K. W. et al. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technololy, 12: 3363–3372, 2015.

KIM, K. et al. Quantitative measurement on removal mechanisms of phosphate by class–F fly ash. International Journal of Coal Preparation and Utilization, 38: 1–12, 2018.

LAGERGREN, S. To the theory of so-called adsorption dissolved substances. The Royal Swedish Academy Science, 24: 1-39, 1898.

LEHMANN, J.; JOSEPH, S. Biochar for Environmental Management: Science and Technology. 1. ed. London (GB): Routledge, 2009. 448 p.

LI, F. et al. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Advances in Agronomy, 158: 131-172, 2019.

MAHADEVAN, H. et al. Optimization of retention of phosphate species onto a novel bentonite-alum adsorbent system. Environmental Technology & Innovation, 9: 1–15, 2018.

MARTINEZ, M. J.; ESPANA, J. C.; DIAZ, J. D. J. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomía Colombiana, 35: 75-81, 2017.

MOHAN, D. et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost, and sustainable adsorbent – Acritical review. Bioresource Technology, 160: 191-202, 2014.

MORALES, M. M. et al. Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use and Management, 29:1-9, 2013.

MURPHY, P. N. C.; STEVENS, R. J. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air and Soil Pollution, 212: 101–111, 2010.

NOVAIS, S. V. et al. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. Journal of Environmental Management, 214: 36–44, 2018.

OFOMAJA, A. E.; NAIDOO, E. B.; MODISE, S. J. Dynamic studies and pseudo-second order modeling of copper (II) biosorption onto pine cone powder. Desalination, 251: 112-122, 2010.

PAUL, A. Modeling of Phosphorus Removal in a Subsurface Wetland System: Emerging Trends in Engineering and Technology 2013. 4th International Conference on Emerging Trends in Engineering and Technology (IETET 2013). Advance in Engineering and Technology, 3: 20-25, 2013.

QAFOKU, N. et al. Variable charge soils: their mineralogy, chemistry and management. Advances in Agronomy, 84:159–215, 2004.

QIAN, T. et al. Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93: 2069–2075, 2013.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa Solos, 2017. 574 p.

WANG, S. et al. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. Chemosphere, 195: 666-672, 2018.

WEI, L. et al. Regulating environmental factors of nutrients release from wheat straw biochar for sustainable agriculture. Clean: Soil, Air, Water, 41: 697–701, 2013.

YAO, Y. et al. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102: 6273-6278, 2011.

ZHAI, L. et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51: 113-122, 2015.

ZHANG, H. et al. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma, 276: 1-6, 2016.

ZHANG, L. et al. Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediment: linear and non-linear methods. Environmental Monitoring and Assessment, 187: 371–381, 2015.

Downloads

Publicado

22-12-2021

Edição

Seção

Engenharia Agrícola