SEED TREATMENT WITH TRICHODERMA AND CHEMICALS TO IMPROVE PHYSIOLOGICAL AND SANITARY QUALITY OF WHEAT CULTIVARS

Authors

  • Ana Paula Silva Couto Department of Agronomy, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, PR https://orcid.org/0000-0001-9754-8555
  • Alana Emanoele Pereira Graduate Program in Agronomy, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, Botucatu, SP https://orcid.org/0000-0002-2946-6651
  • Julia Abati Department of Agronomy, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, PR https://orcid.org/0000-0002-6432-9126
  • Maira Laíza Camargo Fontanela Department of Agronomy, Center for Agricultural Sciences, Universidade Estadual de Maringá, Umuarama, PR https://orcid.org/0000-0002-9260-9934
  • Cláudia Regina Dias-Arieira Department of Agronomy, Center for Agricultural Sciences, Universidade Estadual de Maringá, Umuarama, PR https://orcid.org/0000-0002-1567-816X
  • Nádia Graciele Krohn Agronomy Course, Universidade Tecnológica Federal do Paraná, Santa Helena, Paraná https://orcid.org/0000-0001-9933-4163

DOI:

https://doi.org/10.1590/1983-21252021v34n408rc

Keywords:

Triticum aestivum. Biological control. Microbiolization. Fungicides.

Abstract

Seed treatment with fungi of the genus Trichoderma spp. provides several benefits, including plant growth promotion, stress tolerance, and pathogenic fungi control. Moreover, to avoid inadequate doses and unnecessary costs, these treatments must be applied in proper amounts. However, no study has evaluated their applicability in wheat seeds. This study aimed to determine the most efficient dose of Trichoderma-based  products applied as a seed treatment for improving the physiological and sanitary quality of the wheat cultivars TBIO ‘Toruk’ and TBIO ‘Sossego’, besides comparing the performance of biological and chemical agents. Two biological treatments (Trichoderma asperellum SF 04 and Trichoderma harzianum IBLF006) were applied at 0 (control), 5 × 1011, 1 × 1012, 1.5 × 1012, and 2 × 1012 colony-forming units (CFU) 100 kg−1 seed. Two chemical treatments (carboxin + thiram and pyraclostrobin + thiophanate-methyl + fipronil) were applied at the manufacturers’ recommended doses. Seed germination, shoot and root lengths, seedling dry matter, and sanitary quality were analyzed under laboratory conditions, while seedling emergence, shoot length, and shoot dry matter were analyzed under greenhouse conditions. The optimal dose for wheat seed treatment with T. asperellum SF 04 and T. harzianum IBLF006 was 2 × 1012 CFU 100 kg−1 seed. When comparing biological and chemical products, our findings indicate that both options are adequate for managing wheat diseases and providing seedling growth via seed treatment.

 

Downloads

Download data is not yet available.

References

ADAPAR - Agência de Defesa Agropecuária do Paraná. Agrotóxicos no Paraná. 2021. Disponível em: <http://celepar07web.pr.gov.br/agrotoxicos/pesquisar.asp>. Acesso em: 14 Jun. 2021.

AGÜERO, L. E. M. et al. Inhibition of Aspergillus flavus growth and aflatoxin b1 production in stored maize grains exposed to volatile compounds of Trichoderma harzianum Rifai. Interciência, 33: 219-222, 2008.

BAGWAN, N. B. Evaluation of biocontrol potential of Trichoderma species against Sclerotiumrolfsii, Aspergillus niger and Aspergillus flavus. International Journal of Plant Protection, 4: 107-111, 2011.

BRAND, S. C. et al. Qualidade sanitária e fisiológica de sementes de soja submetidas a tratamento com bioprotetor e fungicida. Revista Brasileira de Sementes, 31: 87-94, 2009.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Manual de análise sanitária de sementes. Brasília, DF: MAPA-ACS, 2009a. 200 p.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: MAPA-ACS, 2009b. 399 p.

CARVALHO, D. D. C. et al. Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46: 822-828, 2011.

CARVALHO FILHO, M. R. et al. Avaliação de isolados de Trichoderma na promoção de crescimento, produção de ácido indolacético in vitro e colonização endofítica de mudas de eucalipto. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2008. 16 p. (Boletim de pesquisa e desenvolvimento, 226).

CARVALHO, N. M., NAKAGAWA, J. Sementes: ciência, tecnologia e produção. 5ed. Jaboticabal, SP: Editora Funep, 2012. 590 p.

CHAGAS, L. F. B. et al. Trichoderma asperellum efficiency in soybean yield components. Comunicata Scientiae, 8: 165-169, 2017.

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos: Nono levantamento, Brasília, 8: 121 p. 2021. Disponível em: < https://www.conab.gov.br >. Acesso em: 2 Jul. 2021.

COONEY, J. M., LAUREN, D. R., DI MENNA, M. E. Impact of competitive fungi on Trichothecene production by Fusarium graminareum. Journal of Agricultural and Food Chemistry, 49: 522-526. 2001.

FARIAS, C. R. J. et al. Inibição de germinação de sementes de trigo e milho em teste de sanidade em substrato de papel. Revista Brasileira Agrociência, 9: 11-144, 2003.

FERREIRA, D.F. SISVAR: A computer statistical analysis system. Ciência e Agrotecnologia, 35: 1039-1042, 2011.

FREIBERG, J. A. et al. Seed treatment and its impact on wheat crop yield potential. Journal of Seed Science, 39: 280-287, 2017.

HARDOIM, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79: 293-320, 2015.

HASAN, M. M. et al. Antagonistic potentiality of Trichoderma harzianum towards seed-borne fungal pathogens of winter wheat cv. Protiva in vitro and in vivo. Journal of Microbiology and Biotechnology, 22: 585-591, 2012.

HEIL, M.; BALDWIN, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 7: 61-67, 2002.

HERMOSA, R. et al. Plant-beneficial effects of Trichoderma and its genes. BMC Microbiology, 158: 17-25, 2012.

KRZYZANOWSKI, F. C. et al. Testes de vigor baseados em desempenho de plântulas. In: KRZYZANOWSKI, F.C. et al. Vigor de sementes: conceitos e testes. 2 ed. Londrina, PR: ABRATES, 2020. cap. 2, p. 93-104.

KUHNEM, P. et al. Informações técnicas para trigo e triticale: Safra 2020, XIII Reunião da Comissão Brasileira de Pesquisa de Trigo e Triticale. 1. ed. Passo Fundo, RS: Biotrigo Genética, 2020. 255 p.

MARINI, N. et al. Carboxim Tiram fungicide effect in wheat seeds physiological quality (Triticum aestivum L.). Revista Brasileira de Ciências Agrárias, 6: 17-22, 2011.

MAPA - Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 45, de 17 de setembro de 2013: Anexo XXVII. Brasília: D.O.U, 34 p. 2013.

MASTOURI, F., BJÖRKMAN, T., HARMAN, G. E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100: 1213-1221, 2010.

MORI, C. et al. Trigo: o produtor pergunta, a Embrapa responde. Brasília, DF: Embrapa, 2016. 309 p.

PEREIRA, F. S. et al. Tratamento de sementes sobre a germinação, o vigor e o desenvolvimento do trigo. Ciências Agroveterinárias, 18: 395-399. 2019.

PESKE, S. T., ROSENTHAL, M. D., ROTA, G. R. M. Sementes: fundamentos científicos e tecnológicos. 3. ed. Pelotas, RS: Ed. Universitária/UFPel, 2012. 573 p.

PRABHAKARAN, N. et al. Screening of difference Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36: 191-198. 2015.

R CORE TEAM (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2019.

RAMÍREZ, S. E. G., RAMELLI, E. G., REYNALDI, S. Importancia del aislamiento y del rango de concentración de conidias en el efecto de Trichoderma asperellum sobre el crecimiento de plántulas de Solanum lycopersicum L. Revista Colombiana de Biotecnología, 15: 118-125, 2013.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa Solos, 2018. 356 p.

SINGH, V. et al. Trichoderma asperellum spore dose depended on modulation of plant growth in vegetable crops. Microbiological Research, 193: 74-86, 2016.

VINALE, F. et al. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology, 48: 705-711, 2009.

YOSHIOKA, Y. et al. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Management Science, 68: 60-66, 2011.

Downloads

Published

27-09-2021

Issue

Section

Agronomy