
ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https://periodicos.ufersa.edu.br/index.php/ecop

Detecting and Classifying Nonconformances in
Code Contracts with CONTRACTOK

Alysson F. Milanez
Department of Engineering and Technology
Federal Rural University of the Semi-Arid

(UFERSA)
Pau dos Ferros, Brazil

alysson.milanez@ufersa.edu.br

Tiago L. Massoni
Department of Computing Systems

Federal University of Campina Grande
(UFCG)

Campina Grande, Brazil
massoni@dsc.ufcg.edu.br

Rohit Gheyi
Department of Computing Systems

Federal University of Campina Grande
(UFCG)

Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Abstract—Nonconformances, in the context of contract-based
programs, must be detected and corrected. Classification may
be useful in the process of nonconformances correction. Cur-
rent approaches do not support any type of nonconformance
classification. In this work, we present a dynamic approach
(CONTRACTOK) for detecting and classifying nonconformances
in the context of Code Contracts programs. The approach is
based on random test generation for nonconformances detection
and on heuristics for classification. We evaluate our approach in
four real programs, summing up 82.8K lines of C# and Code
Contracts, detecting and classifying 16 nonconformances.

Keywords—contract-based programs, nonconformances, clas-
sification.

I. INTRODUCTION

In contract-based programs (such as the Code Contracts [1]),
early detection of nonconformances is desirable for providing
a more reliable account of systems correctness [2]. Developers
tend to apply automated, although incomplete, approaches as
verification by formal proofs is hard to scale.

For Code Contracts, there is Clousot [3] a static approach
for conformance checking. However, this approach does not
present support for nonconformances classification. Noncon-
formances classification may be useful by giving a first step
for the developer in the process of nonconformances correc-
tion [4].

In this paper, we present the initial version of CONTRAC-
TOK tool, a dynamic approach for detecting and classify-
ing nonconformances in C#/Code Contracts programs. The
tool applies randomly-generated tests for nonconformances
detection and a heuristics-based approach for classification
(Section III). We performed a case study with four real C#
with Code Contracts projects, summing up 109,6 KLOC and
we were able to detect and classify 16 nonconformances
(Section IV).

This work is structured as follows. Section II presents an
example of a C#/Code Contracts program and section III
describes CONTRACTOK tool and the heuristics for nonconfor-
mances classification. Then, section IV shows the case study
performed for evaluating the tool. Next, section V presents the
main related work. Finally, in section VI we summarize the
main findings of this work and discuss prospects for future
works.

II. MOTIVATING EXAMPLE

C# class Division (Listing 1) declares a constructor
and two methods: one for contract purposes —
visibility is omitted, for simplicity. Code Contracts
method contracts are expressed by means of calls
to static methods Contract.Requires(...) and
Contract.Ensures(...), specifying pre- and postcon-
ditions, respectively. The Contract.Result<double>()
used in the postcondition refers to the return value of div
method.

Listing 1. Class Division
class Division{
Division() {
this._count = 1;

}
double div(int x, int y) {

Contract.Requires(y != 0);
Contract.Ensures(Contract.Result<double>() * y == x);
return x/y;

}
}

The class is not in conformance with its contracts, as it
presents one nonconformance that can be detected with a
call to div method with a value for x not multiple of the
value for y (like calling div with 1 and 6 as parameters).
Nonconformances between contract and implementation may
be subtle to detect.

Regardless of where the bug is located (contract or code, or
both), the failure may only arise within specific values used as
parameter for the method, as presented in Listing 2. Method
div has a precondition and its body seems correct, so the
likely cause suggested is Strong Postcondition. This problem
may be solved by adding a tolerance value to the expression
in the postcondition of div.

Listing 2. A test case for Division class
Division d = new Division();
d.div(1, 6);

III. CONTRACTOK

In this work, we present CONTRACTOK1, an approach for
detecting and classifying nonconformances in C# programs

1https://github.com/alyssonfm/contractok



ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https://periodicos.ufersa.edu.br/index.php/ecop

with Code Contracts. Our approach follows the same structure
presented by JMLOK2 [5]: tests are automatically generated
– by using an adapted version of Randoop.NET [6] – and
executed, comparing the test results with oracles (generated
from the contracts).

The generated tests are composed of sequences of calls to
methods and constructors under test, while the test oracles are
assertions from the contracts, generated from Code Contracts.
After test execution, a filter distinguishes faults from the
returned failures – those faults make up the nonconformances
subject to classification process.

Regarding nonconformance classification we use an adapted
version of the set of heuristics from Milanez [4] that suggest
likely causes for three types of nonconformances namely
precondition, postcondition, and invariant. The context of a
nonconformance is always a call to a method m within class
C, as we only consider contracts whose assertions are checked
before or after a method call.

The primary test for a precondition type is to verify whether
any expression in the contract involves a parameter of m, or
a field declared in C. If positive, the heuristic suggests Strong
Precondition, as its boolean expressions includes tests to the
method input. Such decision might evidently be inaccurate, as,
even though the precondition tests a given parameter or field,
those tests may really be relevant, and the program calling m
may be failing to supply the correct state used as input to m.

Although a more complex heuristic could speculate on such
scenarios, our main purpose is to provide a suggestion to direct
experts to a limited scope of error — lacking an automatic
suggestion could mean more disparate answers from them.
Otherwise, if a parameter or field is untested in the pre-
condition, we suggest Weak Postcondition, assuming that the
program calling m called a previous method k that incorrectly
set the state that is not accepted by m’s precondition. The
postcondition considered weak is then from k.

For the postcondition type, there may be a default precon-
dition, or at least one field modified by m; in either case, the
likely cause suggested is Weak precondition. It is assumed that
any input is allowed, which might cause problems by the end
of the method’s execution – m can be unable to produce the
desired result. Else, Strong Postcondition is suggested. For the
invariant type, from a default precondition, or at least one field
modified within m, the likely cause is Weak Precondition –
nothing was checked in the contract against potential changes
to the fields. If none of the previous cases is observed, Strong
Invariant is suggested.

IV. CASE STUDY

In this section, we present a case study performed in order
to evaluate our approach. This case study was used as a proof
of concept of CONTRACTOK tool capabilities of detecting and
classifying nonconformances in C#/Code Contracts programs.
More details are available online.2

2https://sites.google.com/a/copin.ufcg.edu.br/contractok/case-study

TABLE I
EXPERIMENTAL UNITS’ SUMMARY. COLUMN KLOC SHOWS THE CODE

SIZE OF EACH EXPERIMENTAL UNIT IN TERMS OF CODE LINES. COLUMN
#CC PRESENTS THE TOTAL OF CONTRACT CLAUSES OF EACH

EXPERIMENTAL UNIT.

Experimental Unit LOC #CC
AutoDiff 1.3 157
Boogie 67 5,214

DBExecutor 2 12
Mishra Reader 12.5 20

Total 82.8 5,403

A. Programs

The C# - Code Contracts systems collected for this study
were taken from Microsoft Research’s site.3 They amount
to 82.8 K lines of C# and 5.4 Code Contracts clauses
(#CC henceforth): AutoDiff, Boogie, DbExecutor, and
Mishra Reader.

While AutoDiff [7] is a library for automatic differ-
entiation of mathematical functions and Boogie [8] is an
Intermediate Verification Language (IVL) for proof obligations
solved by reasoning engines, DBExecutor4 is a simple and
Lightweight Database Executor for .NET 4 Client Profile
and all ADO.NET DbProviders(SQL Server, SQLCE, SQLite,
SQL Azure, Entity SQL, MySql, Oracle, etc...), and Mishra
Reader5 is a Google Reader client developed using WPF
with focus on ergonomy and smooth animations.

These systems are listed in Table I. The systems are
characterized in terms of KLOC - thousands of code lines
and contract clauses (#CC).

B. Results

CONTRACTOK was able to detect 16 nonconformances in
four real projects: one nonconformance in AutoDiff and
15 in Boogie. The others experimental units (DbExecutor
and Mishra Reader) have not presented nonconformances,
considering a time limit for tests generation in range [10, 100]
seconds. Table II presents the detected nonconformances with
their classification.

C. Discussion

As we can see in Table II, CONTRACTOK was able to detect
and classify 16 nonconformances in real projects: one non-
conformance in AutoDiff and 15 in Boogie. This result
might be related to the kind of contracts that the experimental
units have and/or due to the random-based approach for tests
generation (Randoop.NET [6]) used by CONTRACTOK.

The nonconformance discovered in AutoDiff occurs be-
cause the Sum method (from TermBuilder class) has
several checks on the list received as parameter.

Following our set of heuristics (Section III), our tool clas-
sifies this nonconformance as Strong Precondition because
the expressions in the contract involve a parameter of the

3http://research.microsoft.com/en-us/projects/contracts/
4https://archive.codeplex.com/?p=dbexecutor
5https://archive.codeplex.com/?p=mishrareader



ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https://periodicos.ufersa.edu.br/index.php/ecop

TABLE II
NONCONFORMANCES DETECTED AND CLASSIFIED IN C# SYSTEMS.

Nonconformances
Unit Class Method Type Likely Cause

AutoDiff Term-
Builder

Sum precondition Strong Precondition

Boogie

Command- AddZ3Option invariant Strong Invariant

Line- set LogPrefix invariant Strong Invariant
Options Usage invariant Strong Invariant
Expr StoreTok precondition Strong Precondition
GenKill-
Weight

Constructor invariant Weak Precondition

Helper-
Funs

BoogieFunction precondition Strong Precondition

VCExpr-
Binary

Constructor precondition Strong Precondition

VCExpr-
BvExtract-
Op

Constructor precondition Strong Precondition

VCExpres-
sion-

Exists precondition Strong Precondition

Generator Forall precondition Strong Precondition
VCExpr-
MultiAry

Constructor precondition Strong Precondition

VCExpr-
Nullary

Constructor precondition Strong Precondition

VCExpr-
SelectOp

Constructor precondition Strong Precondition

VCExpr-
StoreOp

Constructor precondition Strong Precondition

VCExpr-
Unary

Constructor precondition Strong Precondition

method. Concerning to Boogie, CONTRACTOK detected 11
precondition problems and four problems of invariant.

All precondition problems occurred as a result of the
several checks on the methods’ parameters, so our heuristics
suggests Strong Precondition as likely cause; and the invariant
problems occurred due to the Strong Invariant of the classes
and one case (class GenKillWeight) due to the Weak
Precondition of the constructor.

D. Threats to validity

The randomness promoted by the use of an automatic test
generator (Randoop [6]) by the tools is an internal threat to the
validity of our study; so, we ran each system 10 times for each
time limit (varying from 10 to 100 seconds) for confidence.
In each execution, tests are generated independently of the
previous run, which may show different contexts revealing the
same nonconformances.

In the context of external validity, our results are only valid
in the experimental units considered; in others units these
results may change considerably. In addition, a Randoop-
based [6] approach lacks repeatability, in terms of machine
setting or operating system.

V. RELATED WORK

For DBC, a related approach proposes auto tests [9], in
which contracts are used as oracles to outputs, with automatic
test generation. AutoTest is an implementation of conformance
checking to the Eiffel language [10]. This tool is similar to
CONTRACTOK both aim at conformance checking, and use
randomly-guided tests generation. However, AutoTest supports
mixing manual and automated tests, while our approach fo-
cuses on complete automation.

Concerning to Java/JML programs, Burdy et al. [11] list
tools for detecting nonconformances in those kind of pro-
grams. Moreover, CONTRACTOK applies ideas from JM-
LOK2 [5]: both tools aim to detect nonconformances in
contract-based programs. It is intricate to compare CONTRAC-
TOK with similar JML-based tools; JML [12] offers a much
more complete foundation for formal proofs and detailed
analysis, when compared to Code Contracts.

Regarding Code Contracts, Clousot [3] performs static anal-
ysis over contract-based programs. CONTRACTOK is based
on dynamic analysis; they could definitely be combined for
a unified approach to fill the gaps of each tool alone (false
negatives in dynamic analysis and false positives in static
analysis).

VI. CONCLUSIONS

In this work, we presented an approach for detecting and
classifying nonconformances in C# – Code Contracts pro-
grams. In our experimental study CONTRACTOK detected 16
nonconformances in two real systems: one nonconformance
was detected in AutoDiff and 15 nonconformances in
Boogie.

As future work, we intend to perform new experimental
studies for evaluating our approach with other experimental
units, in addition we plan to perform a comparison between
CONTRACTOK and Clousot [3]. Other interest for future work
is to perform a study concerning the suggestion of fixes to the
detected nonconformances.

We also plan to improve the set of heuristics by means
of approaches such as Data Flow [13] or Control Flow
Analysis [14]. We believe some static technique might improve
the heuristics and give better results for the classification, and
more comprehensive experiments can be performed.

ACKNOWLEDGMENT

This work was supported by the National Institute of
Science and Technology for Software Engineering (INES6),
funded by CNPq, grant 573964/2008-4.

REFERENCES

[1] M. Barnett, M. Fahndrich, and F. Logozzo, “Embedded contract lan-
guages,” in ACM SAC - OOPS. ACM, March 2010.

[2] B. Meyer, Object-Oriented Software Construction. Prentice Hall, 1997.
[3] M. Fahndrich and F. Logozzo, “Clousot: Static contract checking with

Abstract Interpretation,” in FoVeOOS 2010. Springer Verlag, 2010.
[4] A. F. Milanez, “Enhancing Conformance Checking for Contract-Based

Programs,” Master’s thesis, Federal University of Campina Grande,
2014.

[5] A. Milanez, D. Sousa, T. Massoni, and R. Gheyi, “JMLOK2: A tool for
detecting and categorizing nonconformances,” in CBSoft (Tools session),
2014.

[6] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in 29th International Conference on Software
Engineering (ICSE’07), 2007, pp. 75–84.

[7] A. Shtof, A. Agathos, Y. Gingold, A. Shamir, and D. Cohen-Or,
“Geosemantic Snapping for Sketch-Based Modeling,” Computer Graph-
ics Forum, vol. 32, no. 2, pp. 245–253, 2013.

6www.ines.org.br



ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https://periodicos.ufersa.edu.br/index.php/ecop

[8] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and R. Leino, “Boogie:
A Modular Reusable Verifier for Object-Oriented Programs,” in Formal
Methods for Components and Objects. Springer Berlin Heidelberg,
2006, vol. 4111, pp. 364–387.

[9] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf, “Programs
That Test Themselves,” IEEE Computer, pp. 46–55, 2009.

[10] B. Meyer, “Design by Contract,” in Advances in Object-Oriented Soft-
ware Engineering. Prentice Hall, 1991, pp. 1–50.

[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, R. Leino,
and E. Poll, “An overview of JML tools and applications,” STTT, pp.
212–232, 2005.

[12] G. Leavens, A. Baker, and C. Ruby, “JML: A Notation for Detailed De-
sign,” in Behavioral Specifications for Businesses and Systems. Springer
US, 1999, pp. 175–188.

[13] M. Hecht, Flow Analysis of Computer Programs. Elsevier Science Inc.,
1977.

[14] O. Shivers, “Control Flow Analysis in Scheme,” in PLDI. ACM, 1988.


