EFEITO DO CONSÓRCIO DE CAPIM-ELEFANTE COM LEUCENA NA PRODUÇÃO DE FORRAGEM

Maria Socorro de Souza Carneiro
Departamento de Zootecnia, Universidade Federal do Ceará, Av. Mister Hull, 2977 – Pici, CEP 60356-000, Fortaleza, Ceará. E-mail: msocorro@aee.ufc.br

Pedro Zione Souza
Departamento de Zootecnia, Universidade Federal do Ceará, Av. Mister Hull, 2977 – Pici, CEP 60356-000, Fortaleza, Ceará.

Márcio José Alves Peixoto
Doutorando, Departamento de Zootecnia, Universidade Federal do Ceará

Ronaldo de Oliveira Sales
Departamento de Zootecnia, Universidade Federal do Ceará, Av. Mister Hull, 2977 – Pici, CEP 60356-000, Fortaleza, Ceará.

José Valmir Feitosa
Departamento de Zootecnia, Universidade Federal do Ceará, Av. Mister Hull, 2977 – Pici, CEP 60356-000, Fortaleza, Ceará.

RESUMO – Visando uma maior produtividade da capineira e melhor qualidade da forragem produzida, realizou-se um estudo com o objetivo de avaliar a influência do consórcio capim-elefante x leucena, nos aspectos de produtividade, teor de proteína bruta e perfilhamento do capim-elefante consorciado, além de buscar a melhor densidade de plantio nesse consórcio. O experimento foi realizado na Fazenda Experimental Vale do Curu, em Pentecoste, Ceará, utilizando-se o delineamento experimental em blocos completos casualizados com quatro tratamentos e quatro repetições. Os tratamentos foram: consórcio capim-elefante x leucena nos espaçamentos de: 1,00 m x 0,25 m; 1,00 m x 0,50 m; 1,00 m x 0,75 m e 1,00 m x 1,00 m, entre as linhas e entre plantas, respectivamente. Os cortes foram realizados a cada 60 dias, com um total de seis cortes durante o período experimental. A leucena foi cortada a uma altura de 40 cm e o capim-elefante de 0-10 cm do solo. O consórcio com a leucena não influenciou no teor de proteína bruta do capim-elefante. O menor número de perfilhos e a maior produção de matéria seca da gramínea ocorreram no espaçamento 1,00 m x 0,25 m, sendo o indicado para esse consórcio.

EFFECT OF THE INTERCROPPING OF ELEPHANT-GRASS AND LEUCENA IN FORAGE PRODUCTION

ABSTRACT – A study was carried out to evaluate the influence of the elephant-grass x leucena intercropping, in aspects like productivity, crude protein contents and tillering of the intercropped elephant-grass, besides trying to find the best planting density of this intercropping, aiming both highest grass productivity and better produced forage quality. The experiment was carried out at the Fazenda Experimental Vale do Curu, located in Pentecoste-Ceará, using a completely randomized blocks design with four treatments and four replications. The used treatments were: elephant-grass x leucena intercropping in the following spacings: 1.00m x 0.25m; 1.00m x 0.50m; 1.00m x 0.75m and 1.00m x 1.00m, between the lines and plants, respectively. Cuts were done each 60 days, being six cuts during the experimental period. Leucena and capim-elefante were cut 40 cm and 10 cm above ground 10 cm above the soil. The intercropping using leucena did not influence elephant-grass crude protein contents. The smallest tillers number and the biggest dry matter production of the grass occurred in spacing 1.00m x 0.25m, being this the indicated for this intercropping.

Key words: Leucaena leucocephala, Pennisetum purpureum, productivity, spacing, tiller

INTRODUÇÃO

A crescente valorização das terras agrícolas, principalmente aquelas próximas aos grandes centros consumidores, pressiona o produtor a intensificar o nível de produtividade da agropecuária, de modo que a torne competitiva (MARTINS et al., 1998). Por outro lado, a baixa produtividade animal ocorre durante o período seco provocada pela escassez de alimentos suculentos e verdes. Na região semi-

Caatinga (Mossoró, Brasil), v.19, n.1, p.51-55, janeiro/março 2006
www.uferse.edu.br/caatinga
árida do Nordeste, onde esse problema requer uma atenção especial, o uso de leguminosas em consórcio com gramíneas anuais ou perenes mostra-se como uma alternativa viável para a agropecuária, desde que satisfeitos alguns requisitos de ambas as famílias botânicas.

A leucena (Leucaena leucocephala (Lam.) de Wit.) é uma forrageira promissora para o semi-árido, principalmente pela capacidade de rebrotar, mesmo durante a época seca (SOUZA, 1999). É uma leguminosa que suporta pastejos intensos, é bastante nutritiva, sendo considerada um alimento completo. Ela cresce rapidamente produzindo bastante folhas, no entanto, a produtividade depende da variedade, do espaçamento, do solo e das condições climáticas (SALVIANO, 1993).

O capim-elefante (Pennisetum purpureum, Schum.), no contexto mundial, é a gramínea de maior produtividade de fitomassa (CARVALHO, 1985; BOSE e MORALES, 1972). Contudo, um fator preponderante é a qualidade da forragem que, em termos de teor de proteína bruta, está na dependência da idade em que a planta é utilizada (PEDREIRA e BOIN, 1969) e da adubação nitrogenada (MONTEIRO 1990; CORSI e RUSSIO 1992). Vieira e Gomide (1968) comparando três cultivares de capim-elefante, verificaram que a cultivar Mineiro cortada aos 84 dias de idade durante a estação seca, apresentou 9,6% de proteína bruta.

Bhatti et al. (1985) avaliando capim-elefante em diferentes combinações de espaçamentos concluíram que as produções de matéria seca, número e altura de perfilhos por unidade de área, diminuíram à medida que aumentou o espaçamento entre plantas de 0,50 m x 0,50 m para 0,70 m x 0,70 m.

Visando maior produtividade da capineira e melhor qualidade da forragem produzida, o objetivo deste estudo foi avaliar a influência da leucena no consórcio com o capim-elefante, buscando a melhor densidade de plantio nesse consórcio.

MATERIAL E MÉTODOS

O experimento foi conduzido na Fazenda Experimental Vale do Curu em Pente costume - Ceará, pertencente à Universidade Federal do Ceará, no período de fevereiro de 1995 a abril de 1996.

Antes da instalação do experimento foram retiradas amostras do solo a uma profundidade de 0 a 20 cm para análises química e física do solo. Os resultados da análise química foram: pH - 7,3; Ca²⁺ - 4,8 cmol·kg⁻¹; Mg²⁺ - 4,1 cmol·kg⁻¹; P₂O₅ - 119 mg·L⁻¹; K₂O - 164 mg·L⁻¹, e o solo classificado como franco arenoso. O solo foi arado e gradeado, e por ocasião do plantio realizou-se adubação orgânica com esterco bovino (20 t/ha) tanto no capim-elefante como na leucena. Fez-se ainda uma adubação de cobertura com 20 kg de superfosfato triplo/ha e 15 kg de cloreto de potássio/ha na leucena e no capim-elefante aplicou-se 50 kg de uréia/ha, 30 kg de superfosfato triplo/ha e 20 kg de cloreto de potássio/ha, conforme as recomendações da análise do solo.

Antes do plantio em local definitivo, foi feito mudas de leucena cv. Cunningham, utilizando-se três sementes por saco plástico contendo areia e esterco bovino na proporção de 1:1 em volume. Quando as plantas atingiram aproximadamente 30 cm de altura foram transplantadas na área experimental, um mês antes do plantio do capim-elefante, ocorrido em março de 1995. Para o plantio do capim-elefante, cv. Mineiro, foram utilizadas estacas com quatro gemas, provenientes de colmos maduros, com aproximadamente 100 dias de idade, utilizando-se o método da estquia na coxa, e enterrando-se duas gemas. Cada parcela contém 6 fileiras e cada uma com seis plantas, totalizando 36 plantas por parcela. O capim-elefante foi cultivado nas duas fileiras centrais, totalizando 12 plantas, sendo consideradas 8 plantas úteis e as demais como bordadura. A leucena também com 8 plantas úteis, foi cultivada nas duas extremidades (duas fileiras em cada extremidade), considerando as duas fileiras extremas como bordadura.

O delineamento experimental utilizado foi em blocos completos casualizados com quatro tratamentos e quatro repetições. Os tratamentos consistiram no consórcio capim-elefante x leucena nos espaçamentos de 1,00 m x 0,25 m; 1,00 m x 0,50 m; 1,00 m x 0,75 m e 1,00 m x 1,00 m entre linhas e entre plantas, respectivamente.

As forrageiras foram irrigadas por inundação em intervalos de 15 dias durante a estação seca ocorrida de julho a dezembro de 1995. Os cortes do capim-elefante e leucena foram realizados a cada 60 dias, somando um total de seis cortes durante o experimento.

O corte de uniformização do capim-elefante foi realizado dois meses após o plantio a uma altura de 2 a 5 cm do solo e a poda de formação da leucena a 40 cm do solo, ocorrido no mesmo dia.

Caatinga (Mossoró, Brasil), v. 19, n. 1, p. 51-55, janeiro/março 2006
Foram avaliados o número de perfilhos, altura de corte, produção de matéria seca e teor de proteína bruta do capim-elefante, e os dados analisados utilizando-se os procedimentos de modelos lineares gerais (GLM) e de regressão (REG), por intermédio do Sistema de Análises Estatísticas SAS (1999).

Figura 1 Altura de plantas de capim-elefante consorciado com leucena em diferentes espaçamentos, em Pentecoste, Ceará, 1996.

RESULTADOS E DISCUSSÃO

A representação gráfica do espaçamento em função da altura das plantas de capim-elefante é visualizada na Figura 1.

As relações entre as variáveis estudadas foram analisadas por considerações analíticas e por inspeção dos dados, a que tornou mínima a soma dos quadrados dos desvios, denominada regressão de mínimo quadrado.

O modelo de regressão de melhor ajuste foi o modelo polinomial de segundo grau, embora não tenha sido significativo pela análise de regressão, porém apresentou falta de ajuste não significativo.

Pode-se observar que a altura das plantas nos diferentes espaçamentos, variaram de 1,76 a 2,01 m, enquanto que, Italiano et al. (2002) trabalhando com clones de capim-elefante: Cameron verde, Cameron roxo, cortados aos 60 dias observaram altura média de 1,57 m, inferior a encontrada nesse trabalho. Contudo, Deschamps (2005) trabalhando com três ecotipos de capim-elefante Empasc 307 teste, Empasc 309 areia, e Roxo na estação experimental de Itajai, em Santa Catarina, verificou que a cultivar Empasc 307 teste, aos 56 dias, alcançou uma altura de 1,85 m semelhante ao encontrado neste trabalho.

A altura mínima das plantas foi de 1,822 m para o espaçamento de 25 cm e a altura máxima de 1,875 m para espaçamento de 100 cm, em função da análise de regressão.

A representação gráfica do espaçamento em função número de perfilhos das plantas de capim-elefante é visualizada na Figura 2.

Observou-se um número mínimo de perfilhos de 93,03 para o espaçamento de 25 cm e um máximo de 238,75 para espaçamento igual a 100 cm para a função polinomial de melhor ajuste (Figura 2).

Quando se fez adensamento das plantas houve uma diminuição no número de perfilhos do capim-elefante, pois no maior espaçamento houve maior penetração de luz e menor competição entre perfilhos. Essa redução pode ser explicada, em razão da maior competição por água, luz e nutrientes, prejudicando a emissão de novos perfilhos basais ou ainda, a diminuição dos carbohidratos de reserva armazenados pelas gramíneas na base do caule; onde sua escassez causa a redução do sistema radicular, limitando o desenvolvimento das plantas. Esse resultado corroborá com os de Machado et al. (1996) quando afirmaram que uma maior ou menor quantidade de plantas gera um comportamento diferenciado, aumentando ou diminuindo o número de perfilhos em função de competição por nutrientes, água e espaço.

A forma de perfilhamento do gênero *Pennisetum* está relacionada com a eliminação do meristema apical. Quando submetido a pastejo, a...
eliminação do meristema apical é interessante principalmente para estimular o surgimento de perfílios axilares (CORSI et al., 1996), os quais apresentaram maior relação folha/côim, são tenros e, com isso, de elevado valor nutricio, quando comparados aos perfílios de origem basilares.

A representação gráfica do espaçamento em função número de perfílios das plantas de capim-elefante está representada na Figura 3.

O modelo de regressão de melhor ajuste foi o modelo polinomial de segundo grau, modelo significativo (P<0,05) e com falta de ajuste não significativo. A proporção da variação explicada em relação a variação total, ou seja, a parte da variação total da matéria seca que foi explicada pela variação do espaçamento foi de 43,12%, mostrando desta forma o ajuste da curva de regressão.

Observou-se uma produção mínima de matéria seca de 20,19 t/ha em 80,93 cm de espaçamento e uma máxima de 30,33 t/ha para o espaçamento 25 cm para a função polinomial de melhor ajuste (Figura 3).

A produção de matéria seca do capim-elefante consorciado com leucena foi influenciado negativamente pelo aumento do espaçamento entre linhas, confirmando os relatos de Buenda e Purcini (1974) e Machado et al. (1996) quando afirmaram que o menor espaçamento entre plantas do capim-elefante acarreta numa maior produção por unidade de área.

O capim-elefante x leucena no espaçamento 1,00 m x 0,25 m com produção média de matéria seca de 30,3 t/ha em seis cortes, foi próxima a encontrada por Machado et al. (1996) avaliando o capim-elefante plantado no espaçamento de 0,25 m x 0,25 m que foi 34,2 t matéria seca/ha. Observou-se que com 0,25 m de distância entre plantas ocorreu um incremento de 44,1% na produção de matéria seca quando comparado ao espaçamento de 1,00 m. Segundo Carvalho et al. (1994) o capim-elefante é uma espécie de alta eficiência fotossintética, resultando numa grande capacidade de acumulação de matéria seca, sendo as condições climáticas da região semi-árida favoráveis a altas produções dessa forrageira.

Queiroz Filho et al. (2000) visando associar a quantidade com a qualidade da forragem produzida do capim-elefante, cv. Roxo no espaçamento de 0,70 m x 0,8 m e avaliando os intervalos de corte de 40, 60, 80 e 100 dias, concluíram que a melhor idade de corte foi entre 60 a 80 dias. De maneira análoga, Santos (1996) afirmou que a idade de 60 a 70 dias foi melhor para o uso do capim-elefante com teores de açúcares.

Os teores de proteína bruta do capim-elefante não foram influenciados pelos tratamentos, os quais variaram de 5,33 a 6,07%. Esses resultados demonstraram que o espaçamento e a presença da leguminosa não afetaram o teor de proteína bruta, confirmando os relatos de Machado et al. (1996), quando trabalharam com a cultivar Três Rios. Por outro lado, Carvalho et al. (2000) avaliando a qualidade da forragem do capim-elefante, quando submetido a diferentes doses de fertilizantes e intervalos de cortes, obtiveram aos 56 dias uma média de 7,65% no teor de proteína bruta, enquanto que Vieira e Gomide (1968) encontraram um teor de 9,6% para o capim-elefante cv. Mineiro, dados esses superiores aos encontrados neste trabalho.

CONCLUSÃO

A leucena não influenciou na altura e no teor de proteína bruta do capim-elefante.

O espaçamento mais indicado para o plantio do capim-elefante consorciado com a leucena é de 1,00 m x 0,25 m entre linhas.

REFERÊNCIAS BIBLIOGRÁFICAS

BHATTI, M.B.; DOST MOHAMMAD, SARFAJ SULTANI, SULTANI, M.I. Effect of different inter-and intra-row spacings on forage

