A COBERTURA NATURAL AO REDOR DO CAMPO REDUZ OS DANOS ÀS LAVOURAS E A ABUNDÂNCIA DE PRAGAS NAS TERRAS SECAS DO BRASIL

Autores

DOI:

https://doi.org/10.1590/1983-21252022v35n107rc

Palavras-chave:

Serviços ecossistêmicos. Controle biológico. Complexidade de paisagem. Semiárido. Desenvolvimento sustentável.

Resumo

Um dos principais serviços ecossistêmicos prestados à agricultura em todo o mundo é a redução de pragas por inimigos naturais. No entanto, a composição da paisagem afeta várias dimensões do controle de pragas, e o habitat não agrícola ao redor dos campos agrícolas mostra respostas variáveis entre diferentes regiões do globo. Nesse trabalho, danos por herbivoria e abundância de pragas foram comparados entre duas paisagens com distintas cobertura e uso do solo (1 - conservada, com alta complexidade estrutural; e 2- degradada, com baixa complexidade). As observações de campo foram realizadas em plantios experimentais de goiabeiras, no Cariri Paraibano, uma das regiões mais secas da Caatinga. Os resultados obtidos demonstram que danos provocados por insetos da ordem Orthoptera, especialmente gafanhotos, bem como sua abundância, foram significativamente menores na paisagem com de alta complexidade estrutural. Portanto, esses resultados apoiam a hipótese que danos às culturas e a abundância de pragas são menores em paisagens com alta complexidade estrutural. Além disso, os resultados são muito importantes para as regiões semiáridas, pois fornecem informações sobre a relação entre a estrutura da paisagem e os danos à cultura em uma lacuna regional. Como as regiões semiáridas são ecossistemas criticamente ameaçados em todo o continente americano, paisagens agrícolas sustentáveis com ações de restauração florestal podem ajudar essas regiões a alcançar o desenvolvimento sustentável.

 

Downloads

Não há dados estatísticos.

Referências

ALBERT, C.; VON HAAREN, C.; LOVETT, A. A. Synthesis and Prospects for Landscape Planning. In: C. von Haaren, A. A. Lovett, C. Albert (Eds.). Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe, The Netherlands: Springer Nature, 2019. Part VI, p. 495–499.

ALENCAR, R. D. et al. Adubação potássica na produção e qualidade pós-colheita de goiaba ‘Paluma’no semiárido potiguar. Comunicata Scientiae, 7: 139–148, 2016.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711–728, 2013.

ALVES, T. L. B.; AZEVEDO, P. V.; CÂNDIDO, G. A. Socioeconomic indicators and desertification in the upper course of the Paraíba river watershed. Ambiente & Sociedade, 20: 19–38, 2017.

ARAB WATER COUNCIL. Vulnerability of arid and semi-arid regions to climate change – Impacts and adaptive strategies. 2009. Disponível em: <https://www.preventionweb.net/go/12914>. Acesso em: 25 Ago. 2020.

ARAUJO, H. F. P.et al. A sustainable agricultural landscape model for tropical drylands. Land Use Policy, 100: 104913, 2021.

ARAUJO, H. F. P. Amostragem, Estimativa de Riqueza de Espécies e Variação Temporal na Diversidade, Dieta e Reprodução de Aves em Área de Caatinga, Brasil. 2009. 198 f. Tese (Doutorado em Ciências Biológicas: Área de Concentração em Zoologia) - Universidade Federal da Paraíba, João Pessoa, 2009.

ARAUJO, H. F. P.; SILVA, J. M. C. The Avifauna of the Caatinga: Biogeography, Ecology, and Conservation. In: Caatinga. Springer International Publishing, 2017. p. 181–210.

ARRUDA, A. R.. Efeito de variáveis ambientais e alteração da vegetação na riqueza de endemismos e comunidades de aves na Caatinga. Tese de doutorado - Universidade Federal da Paraíba, 2017.

BALE, J.; VAN LENTEREN, J.; BIGLER, F. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 761–776, 2008.

BALZAN, M. V.; BOCCI, G.; MOONEN, A.-C. Landscape complexity and field margin vegetation diversity enhance natural enemies and reduce herbivory by Lepidoptera pests on tomato crop. BioControl, 61: 141–154, 2016.

BARBOSA, M. R. V.et al. Vegetação do Cariri Paraibano. Oecologia Brasiliensis, 11: 313–322, 2007.

BELTRÃO, N. E. M. Breve História do Algodão no Nordeste do Brasil. Campina Grande, PB: Embrapa Algodão, 2003. 17 p.

BIANCHI, F. J. J.; BOOIJ, C. J; TSCHARNTKE, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273: 1715–1727, 2006.

BOMMARCO, R.; KLEIJN, D.; POTTS, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28: 230–238, 2013.

BORROR, D. J.; DELONG, C. T. Introduction to the Study of Insects (7th ed.). Cengage Learning, 2004. 888 p.

BOWMAN, A.; AZZALINI, A. Smoothing Methods for Nonparametric Regression and Density Estimation (Package ‘sm’), 2019. 55 p

CHAPLIN-KRAMER, R. et al. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 14: 922–932, 2011.

CHAUDHURI, P.; MARRON, J. S. Scale space view of curve estimation. The Annals of Statistics, 28: 408–428, 2000.

CORDER, G. W.; FOREMAN, D. I. Nonparametric Statistics: A Step-by-Step Approach. 2 ed. Wiley, 2014. 288 p.

COSTA, S. R.; BUENO, M. G. A saga do algodão: das primeiras lavouras à ação na OMC. Rio de Janeiro, RJ: Insight Engenharia, 2004. 144 p.

FERRER-PARIS, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conservation Letters, 12: e12623, 2019.

GURR, G. M. et al. Habitat Management to Suppress Pest Populations: Progress and Prospects. Annual Review of Entomology, 62: 91–109, 2017.

JONSSON, M. et al. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology, 52: 1274–1282, 2015.

KARP, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences, 115: 7863–7870, 2018.

KHAN, Z. R. et al. Chemical ecology and conservation biological control. Biological Control, 45: 210–224, 2008.

LANDIS, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18: 1–12, 2017.

LEITE, P. A. M. et al. The influence of forest regrowth on soil hydraulic properties and erosion in a semiarid region of Brazil. Ecohydrology, 11: e1910, 2018.

LOSEY, J. E.; VAUGHAN, M. The economic value of ecological services provided by insects. BioScience, 56: 311–323, 2006.

MARTIN, E. A. et al. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences, 110: 5534–5539, 2013.

NEWMAN, E. A. et al. Scaling and Complexity in Landscape Ecology. Frontiers in Ecology and Evolution, 7, 2019.

OERKE, E. C. Crop losses to pests. The Journal of Agricultural Science, 144: 31–43, 2006.

PARK, M. G.et al. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences, 282: 1-9, 2015.

PEREIRA-JÚNIOR, L. R. et al. Socioeconomic and diagnostic strategies for living with drought in semiarid region. Engenharia Ambiental, 12: 168–184, 2015.

PEREZ-ALVAREZ, R. et al. Effectiveness of augmentative biological control depends on landscape context. Scientific Reports, 9:1-15, 2019.

PEREZ-MARIN, A. et al. Núcleos de desertificação no semiárido brasileiro: Ocorrência natural ou antrópica? Parcerias Estratégicas, 17: 106, 2012.

PIMENTEL, D. Environmental and Economic Costs of the Application of Pesticides Primarily in the United States. In: R. PESHIN; A. K. DHAWAN (Eds.), Integrated Pest Management: Innovation-Development Process. Dordrecht: Springer Netherlands, 2009. v. 1, p. 89–111.

RAMANKUTTY, N. et al. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology, 69: 789–815, 2018.

REYNOLDS, J. F.et al. Global Desertification: Building a Science for Dryland Development. Science, 316: 847–851, 2007.

RUSCH, A. et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems & Environment, 221: 198–204, 2016.

SÁ, I. B. et al. Processos de desertificação no Semiárido brasileiro. In I. . Sá & P. C. G. Silva (Eds.), Semiárido brasileiro: pesquisa desenvolvimento e inovação Petrolina: Embrapa Semiárido, 2010. p. 125–158.

SANDA, N. B.; SUNUSI, M. Fundamentals of Biological Control of pests. IJCBS Review Paper, 1: 1–11, 2014.

SARRIS, A. The Role of Agriculture in Economic Development and Poverty Reduction. Rural Development Department - The World Bank, 2001. 86 p.

SAYER, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proceedings of the National Academy of Sciences, 110: 8349–8356, 2013.

SCHERR, S. J.; MCNEELY, J. A. Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 477–494, 2008.

SILVA, J. M. C.; BARBOSA, L. C. F. Sustainable Agriculture Landscapes for Production of Biofuels in Brazil. In: BAGLEY, S. B. et al. (Eds.), Energy Security, sustainable Development, and the Environment. Lanham, Boulder, New York, London: Lexington Books, 2018. p. 95–109.

SILVA, J. M. C. et al. The Caatinga: Understanding the Challenges. In: Caatinga. Springer International Publishing, 2017. p. 3–19.

SÖRENSEN, L. A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands, 2007. Available at: Cambridge. <https://www.unepwcmc.org/system/dataset_file_fields/files/000/000/323/original/dryland_report_final_HR.pdf?1439378321>. Access on: Aug. 25, 2020.

SOUZA, B. I.; SOUZA, R. S. The occupation process of the Cariri Velhos – PB and the effects in the vegetal cover: contribution to the Cultural Biogeography of the semiarid. Caderno de Geografia, 26: 229–258, 2016.

STAFFORD SMITH, D. M. et al. Drylands: Coping with Uncertainty, Thresholds, and Changes in State. In: Principles of Ecosystem Stewardship. Springer New York, 2009. p. 171–195.

STEWART, B. A. Dryland Farming. In Reference Module in Food Science. Amsterdam, The Netherlands: Elsevier, 2016. 10 p.

STEWART, B. A.; KOOHAFKAN, P.; RAMAMOORTHY, K. Dryland Agriculture Defined and Its Importance to the World. In: PETERSON, G. A.; UNGER, P. W.; PAYNE, W. A. (Eds.). Dryland Agriculture. Madison, USA: American Society of Agronomy, 2006. p. 1-26.

TAYLEUR, C. et al. Global Coverage of Agricultural Sustainability Standards, and Their Role in Conserving Biodiversity. Conservation Letters, 10: 610–618, 2017.

THIES, C.; STEFFAN-DEWENTER, I.; TSCHARNTKE, T. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos, 101: 18–25, 2003.

TRAVASSOS, I. S.; SOUSA, B. I. Desmatamento e Desertificação no Cariri Paraibano. Brasileira de Geografia Fisica, 7: 103–116, 2014.

TSCHARNTKE, T.; RAND, T. A.; BIANCHI, F. J. J. A. The landscape context of trophic interactions : insect spillover across the crop-noncrop interface. Annales Zoologici Fennici, 42: 421–432, 2005.

UNDDD - United Nations. United Nation decade for deserts and fight against desertification. Disponível em: <http://www.un.org/en/events/desertification_decade/whynow.shtml>. Acesso em: 25 ago. 2020.

VERES, A. et al. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems & Environment, 166: 110–117, 2013.

VIEIRA, R. M. S. P. et al. Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth, 6: 347–360, 2015.

VON HAAREN, C.; LOVETT, A. A.; ALBERT, C. Landscape Planning and Ecosystem Services: The Sum is More than the Parts. In: VON HAAREN, C. et al. (Eds.). Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe. The Netherlands: Springer Nature, 2019. Part I, p. 3-9.

WHITE, R. P.; NACKONEY, J. Drylands, people, and ecosystem goods and services: A webbased geospatial analysis. 2003. Disponível em: <http://pdf.wri.org/drylands.pdf>. Acesso em: 25 ago. 2020.

WRATTEN, S. D. et al. Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems & Environment, 159: 112–122, 2012.

YIRDAW, E.; TIGABU, M.; MONGE, A. Rehabilitation of degraded dryland ecosystems – review. Silva Fennica, 51: 1-32, 2017.

Downloads

Publicado

22-12-2021

Edição

Seção

Agronomia