Multivariate approach in the evaluation of performance and carcass traits of Suffolk crossbred lambs

Autores/as

  • Vitor Antonio Soukef Gobbi Universidade de Uberaba, Departamento de Medicina Veterinária e Programa de Mestrado em Sanidade e Produção Animal nos Trópicos, Avenida Nenê Sabino, 1801, Universitário, 38055-500, Uberaba-MG, Brazil. https://orcid.org/0009-0007-0149-2245
  • Nahalia Ferraz Universidad de la República, Departamento de Biometría, Estadísticas y Computación, Garzón 780, 12900, Montevideo, Uruguay https://orcid.org/0000-0001-9639-7548
  • Joely Ferreira Figueiredo Bittar Universidade de Uberaba, Departamento de Medicina Veterinária e Programa de Mestrado em Sanidade e Produção Animal nos Trópicos, Avenida Nenê Sabino, 1801, Universitário, 38055-500, Uberaba-MG, Brazil. https://orcid.org/0000-0002-1813-9006
  • Eustáquio Resende Bittar Universidade de Uberaba, Departamento de Medicina Veterinária e Programa de Mestrado em Sanidade e Produção Animal nos Trópicos, Avenida Nenê Sabino, 1801, Universitário, 38055-500, Uberaba-MG, Brazil. https://orcid.org/0000-0002-7176-9920
  • Guilherme Costa Venturini Universidade de Uberaba, Departamento de Medicina Veterinária e Programa de Mestrado em Sanidade e Produção Animal nos Trópicos, Avenida Nenê Sabino, 1801, Universitário, 38055-500, Uberaba-MG, Brazil. https://orcid.org/0000-0003-4738-5983

DOI:

https://doi.org/10.21708/avb.2024.18.2.12333

Resumen

Evaluate associations between economically important traits is crucial as it considers the intensity of therelationship between variables and aids in excluding redundant traits, thereby facilitating the early selection of animals.The aim of this study was to evaluate the association between performance and carcass traits of crossbred lambs and to identifya trait that demonstrates higher discriminatory power, to assisting in the selection of animals. Was used 61 male lambs wereused to assess trait associations via Pearson correlation, Euclidean distance, and principal components (PC). With clusteranalysis, we observed the formation of two distinct groups (Euclidean distance), indicating significant dissimilarity betweenthe groups. This dissimilarity was attributed to the group of variables RP, TD, TW, and RW, while the other group wascharacterized by LP, SW, HCW, and ECC. It was observed that performance with carcass traits presented linear correlationsbetween 0.28 to 0.63. Through multivariate analysis, it was possible to 4 PCs selected that together explained 78.35% of thetotal variance of the data, with eigenvalues greater than 0.70. Through the first principal component, which retains the highestpercentage of total variance (38.94%), redundant or non-discriminant descriptors were discarded. Within this component,four traits (SW, ECC, RW, and HCW) were considered the most important in describing the variability of the dataset studied.However, slaughter weight would be the selectable variable to represent the other carcass traits, due to greater discriminatorypower. This trait can be considered easier to measure and more economical for breeders.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2024-06-30

Número

Sección

Original Articles / Artigos de Pesquisa