CARACTERIZAÇÃO FOTOSSINTÉTICA DA ESPÉCIE ISOHÍDRICA PATA-DE-ELEFANTE EM CONDIÇÕES DE DEFICIÊNCIA HÍDRICA

Autores

  • Suzana Chiari Bertolli Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Rio Claro
  • Juliano de Souza
  • Gustavo Maia Souza Universidade do Oeste Paulista (UNOESTE)

DOI:

https://doi.org/10.1590/1983-21252015v28n322rc

Palavras-chave:

Beaucarnea recurvata Lem. Desidratação. Regulação hídrica. Trocas gasosas.

Resumo

A manutenção do status hídrico de uma planta é essencial para seu desenvolvimento adequado em ambientes com limitação da disponibilidade de água. Diferentes espécies possuem diversos mecanismos que conferem maior habilidade de sobrevivência em condições de seca. O objetivo deste estudo foi avaliar as alterações de parâmetros fisiológicos da espécie isohídrica Beaucarnea recurvata Lem. O estudo envolveu experimentos com desidratação lenta (DL) realizado por meio da suspensão da irrigação seguida por reidratação, e com desidratação rápida (DR), onde folhas individuais foram destacadas e colocadas para desidratar em bancada de laboratório. Os resultados mostraram que apesar da porcentagem de água no solo atingir valores críticos (12%) logo nos primeiros dias de DL as plantas apresentaram manutenção do conteúdo relativo de água (≅80%) ao longo de 54 dias de DL, quando a fotossíntese líquida (PN) atingiu valores nulos. Ao longo de DL foi observado que a PN, a condutância estomática (gs), a eficiência instantânea de carboxilação, a eficiência fotoquímica e o conteúdo de clorofila foram reduzidos. No experimento de DR foi observada alta correlação entre PN e gs. Os resultados sugerem que a redução da fotossíntese foi inicialmente causada por um ajuste estomático, culminando com um desequilíbrio entre a produção de energia fotoquímica e o seu consumo pelo aparato bioquímico da fotossíntese. Entretanto, após a reidratação, os parâmetros de trocas gasosas foram recuperados, indicando que o comportamento isohídrico dessa espécie contribuiu para que as plantas não sofressem danos extensivos durante um período prolongado de suspensão da irrigação.

Downloads

Não há dados estatísticos.

Referências

BERTOLLI, S. C.; RAPCHAN, G. L., SOUZA, G. M. Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. Photosynthetica. Praha, v. 50, n. 3, p. 329-336, 2012.

BERTOLLI, S. C.; MAZZAFERA, P.; SOUZA, G. M. Why is it so difficult to identify a single indicator of water stress in plants? A proposal for a multivariate analysis to assess emergent properties. Plant Biology, Weinheim, v. 16, n. 3, p. 578-585, 2014.

BILGER, W.; BJÖRKMAN, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, Dordrecht, v. 25, n. 3, p. 173-185, 1990.

BOBICH, E. G.; NORTH, G. B. Structural implication of succulence: Architecture, anatomy, and mechanics of photosynthetic stem succulents, pachycauls, and leaf succulents. In: BARRERA, E.; SMITH, W.K. (Ed.) Perspectives in biophysical plant ecophysiology - A tribute to Park S. Nobel. Universidad Nacional Autonoma de Mexico. Ciudad Universitaria, México, 2009, p. 3-38.

BUCCI, S. J. et al. Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand. Brazilian Journal of Plant Physiology, Londrina, v. 20, n. 3, p. 233-245, 2008.

BUCKLEY, T. N. The control of stomata by water balance. New Phytologist, Lancaster, v. 168, n. 2, p. 275-292, 2005.

CHAVES, M. M.; FLEXAS, J.; PINHEIRO, C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, Exeter, v. 103, n. 4, p. 551–560, 2009.

CHAVES, M. M.; PEREIRA, J. S.; MAROCO, J. Understanding plant response to drought - from genes to the whole plant. Functional Plant Biology, Clayton South, v. 30, n. 3, p. 239–264, 2003.

CORNIC, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends in Plant Science, London, v. 5, n. 5, p. 183-221, 2000.

EPRON, D.; DREYER, E.; BREDA, N. Photosynthesis of oak tress (Quercus petraea (Matt.) Liebl.) during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant, Cell & Environment, Malden, v. 15, n. 7, p. 809-820, 1992.

FLEXAS, J. et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Journal of Experimental Botany, Lancaster, v. 60, n. 8, p. 2361-2377, 2009.

FLEXAS, J. et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, Lund, v. 127, n. 3, p. 343-352, 2006.

GIBSON, A. C. The anatomy of succulence. In: TING, I. P.; GIBBS, M. (Ed.) Crassulacean acid metabolism: proceedings of the fifth annual symposium in botany, January 16-16th, commemorating the seventy-fifth anniversary of the Agricultural Experiment Station at the University of California Riverside. American Society of Plant Physiologists, Rockville, Maryland, 1982, p. 1-15.

KRAMER, D. M.; EVANS, J. R. The Importance of Energy Balance in Improving Photosynthetic Productivity. Plant Physiology, Glasgow, v. 155, n. 1, p. 70-78, 2011.

LARCHER, W. Ecofisiologia Vegetal. 1 ed. São Carlos, SP: RiMa, 2000. 531 p.

LAWLOR, D. W.; TEZARA, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, Exeter, v. 103, n. 4, p. 561-579, 2009.

LAWLOR, D. W.; CORNIC, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, Malden, v. 25, n. 2, p. 275-294, 2002.

LORENZI, H.; SOUZA, H. M. Plantas ornamentais no Brasil: arbustivas, herbáceas e trepadeiras. Nova Odessa, SP: Instituto Plantarum, 2008. 988 p.

MASEDA, P. H.; FERNÁNDEZ, R. J. Stay wet or else: three ways in wich plants can adjust hydraulically to their environment. Journal of Experimental Botany, Lancaster, v. 57, n. 15, p. 3963-3977, 2006.

MCDOWELL, N. et. al Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, Lancaster, v. 178, n. 4, p. 719–739, 2008.

MEDRANO, H. et al. Regulation of photosynthesis of C3 plants in response to progressive drought: the interest of stomatal conductance as a reference parameter. Annals of Botany, Exeter, v. 89, n. 7, p. 895–905, 2002.

PINHEIRO, C; CHAVES, M. M. Photosynthesis and drought: can we make metabolic connections from avaiable data? Journal of Experimental Botany, Lancaster, v. 62, n. 3, p. 869-882, 2011.

POU, A. et al. Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil, Dordrecht, v. 359, n. 1-2, p. 335-349, 2012.

SANDA, S. et al. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiologia Plantarum, Lund, v. 142, n. 3, p. 247-264, 2011.

SCHULTZ, H. R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two fieldgrown Vitis vinifera L. cultivars during drought. Plant, Cell & Environment, Malden, v. 26, n. 8, p. 1393–1405, 2003.

SILVA, J. M.; ARRABAÇA, M. C. Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, Lund, v. 121, n. 3, p. 409-420, 2004.

SOAR, C. J. et al. Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv. Shiraz: biochemical and molecular biological evidence indicating their source. Functional Plant Biology, Clayton South, v. 31, n. 6, p. 659–669, 2004.

SULTAN, S. E. Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia, New York, v. 15, n. 4, p. 564-578, 1998.

TARDIEU, F.; SIMONNEAU, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. Journal of Experimental Botany, Lancaster, v. 49, n. (Special issue), p. 419-432, 1998.

VANDELEUR, R. K. et al. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, Glasgow, v. 149, n. 1, p. 445–460, 2009.

VON WILLERT, D. J. Life Strategies of Succulents in Deserts. With Special reference to the Namib Desert. 1 ed. New York. Cambridge University Press, 1992. 368 p.

Downloads

Publicado

31-08-2015

Edição

Seção

Engenharia Agrícola