NEMATÓIDES ENTOMOPATOGÊNICOS PARA O CONTROLE DA MOSCA-DO-MEDITERRÂNEO (DIPTERA: TEPHRITIDAE)

Autores

DOI:

https://doi.org/10.1590/1983-21252020v33n412rc

Palavras-chave:

Ceratitis capitata. Steinernema carpocapsae. Heterorhabditis amazonensis. Controle biológico.

Resumo

A mosca-das-frutas (Ceratitis capitata) é considerada uma das principais pragas da fruticultura, acarretando perdas significativas para este setor. Este inseto passa uma fase de sua vida no solo, sendo alvo em potencial para nematoides entomopatogênicos. O objetivo desse trabalho foi avaliar a eficiência de Steinernema carpocapsae ALL e Heterorhabditis amazonensis JPM4 para o controle de Ceratits capitata (Diptera: Tephritidae). Para a avaliação de diferentes concentrações foram utilizadas placas com papel filtro ou vasos com 200g de solo. Para cada recipiente foram transferidos 20 indivíduos (larvas ou pupas) e aplicada a suspensão dos nematoide nas concentrações 140, 180, 220, 260 e 300 JIs/cm².  Para avaliação do deslocamento horizontal, foram utilizados vasos contendo solo e a cada 10cm de distância foi colocada uma tela de metal, para delimitar as diferentes áreas (0, 10, 20 e 30cm do local de aplicação do nematoide). Para cada área foram transferidas 10 larvas e 10 pupas. Na distância zero foram aplicados de 10 mL de suspensão dos nematoides contendo 220JIs/cm². Para o estudo da eficiência desses nematoides ao longo do tempo, em cada vaso foram aplicados 10mL de suspensão de nematoide com 220JIs/cm², e em cada período (0, 10, 20 e 30 dias pós-aplicação do nematoide) foram transferidas 10 larvas e 10 pupas. Verificou-se que os dois nematoides causaram mortalidade de C. capitata, sendo que S. carpocapsae ALL foi mais eficiente. Porém, esse nematoide não apresentou capacidade de deslocamento horizontal, característica essa observada para H. amazonensis JPM4. Ambos os nematoides tiveram sua eficiência reduzida ao longo do tempo.

 

Downloads

Não há dados estatísticos.

Referências

ADAMS, B. J.; NGUYEN, K. B. Taxonomy and systematics. In: GAUGLER, R. (Ed). Entomopathogenic nematology. Wallingford, Oxon: CABI Publishing, 2002. cap. 1, p. 1-28.

ANDALÓ, V. et al. Movement of Heterorhabditis amazonesis and Steinernema arenarium in search of corn fall armyworm larvae in artificial conditions. Scientia Agricola, 3: 226-230, 2012.

ANDALÓ, V.; MOREIRA, G. F.; MOINO Jr, A. Studies of two new populations of Heterorhabditis amazonensis (Rhabditida: Heterorhabditidae). Nematropica, 39: 199-211, 2009.

ANDALÓ, V.; MOREIRA, G. F.; MOINO Jr, A. Heterorhabditis amazonensis RSC5 (Rhabditida: Heterorhabditidae) movement and host recognition. Revista Colombiana de Entomologia, 40: 91-97, 2014.

CHERGUI, S. et al. Efficacy of Turkish isolate of Steinernema feltiae (Rhabditida: Steinernematidae) in controlling the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), under laboratory conditions. Egyptian Journal of Biological Pest Control, 29: 01-07, 2019.

DIAS, N. P. et al. Fruit fly management research: A systematic review of monitoring and control tactics in the world. Crop Protection, 12:187:200, 2018.

EGARTNER, A. et al. Recent records of the Mediterranean fruit fly, Ceratitis capitata (Tephritidae, Diptera), in Austria. IOBC-WPRS Bulletin, 146: 143-152, 2019.

EL-SADAWY, H. A. Effect of temperature and soil moisture on the infectivity of some entomopathogenic nematodes against larvae of the rice moth and flesh fly. International Journal of Nematology, 11: 58-62, 2001.

FOELKEL, E.; MONTEIRO, L. B.; VOSS, M. Virulence of nematodes against larvae of the south-American fruit fly in laboratory using soil from Porto Amazonas, Paraná, Brazil, as substrate. Ciência Rural, 46: 405-410, 2016.

GAUGLER, R.; WANG, Y.; CAMPBELL, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: defences against entomopathogenic nematode attack. Journal of Invertebrate Pathology, 64: 193-199, 1994.

GODJO, A. et al. Pathogenicity of indigenous entomopathogenic nematodes from Benin against mango fruit fly (Bactrocera dorsalis) under laboratory conditions. Biological Control, 117: 68-77, 2018.

GRIFFIN, C. et al. Biology and behaviour. In: GREVAL, P., EHLERS, R. U., SHAPIRO-ILAN, D. (Eds.). Nematodes as Biocontrol Agents. Wallingford, Oxon: CABI Publishing, 2005. cap 2, p. 47–64.

HEVE, W. K. et al. Biological control potential of entomopathogenic nematodes for management of caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae). Pest Management Science, 73: 1220–1228, 2017.

KEPENEKCI, I.; HAZIR, S.; ÖZDEM, A. Evaluation of native entomopathogenic nematodes for the control of the erupean cherry fruit fly Rhagoletis cerasi L. (Diptera: Tephritidae) larvae in soil. Turkish Journal of Agriculture and Forestry, 39: 74-79, 2015.

KHOURY, Y. E. et al. Effect of temperature on the pathogenicity of mediterranean native entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from natural ecosystems. Redia, 101: 123-127, 2018.

LEWIS, E. E. et al. Behavioral ecology of entomopathogenic nematodes. Biological Control, 38: 66-79, 2006.

MALAN, A. P.; MANRAKHAN, A. Susceptibility of the mediterranean fruit fly (Ceratitis capitata) and the natal fruit fly (Ceratitis rosa) to entomopathogenic nematodes. Journal of Invertebrate Pathology, 100: 47-49, 2009.

JAMES, M.; MALAN, A. P.; ADDISON, P. Surveying and screening south african entomopathogenic nematodes for the control of the mediterranean fruit fly, Ceratitis capitata (Wiedemann). Crop Protection, 105: 41-48, 2018.

LABAUDE, S.; GRIFFIN, C. Transmission success of entomopathogenic nematodes used in pest control. Insects, 72: 1-20, 2018.

MASTORE, M. et al. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. Journal of Thermal Biology, 79: 15-23, 2019.

MINAS, R. S. et al. Potential of entomopathogenic nematodes (Rhabditida: Heterorhabditidae) to control Mediterranean fruit fly (Diptera: Tephritidae) soil stages. Nematoda, 3: 1-14, 2016.

MORTON, A.; GARCÍA-DEL-PINO, F. Ecological characterization of entomopathogenic nematodes isolated in stone fruit orchard soils of mediterranean areas. Journal of Invertebrate Pathology, 102: 203-213, 2009.

MURIITHI, B. W. et al. Impact assessment of Integrated Pest Management (IPM) strategy forsuppression of mango-infesting fruitflies in Kenya. Crop Protection, 81: 20-29, 2016.

ROHDE, C. et al. Influence of soil temperature and moisture on the infectivity of entomopathogenic nematodes (Rhabditida: Heterorhabiditidae e Steinernematidae) against larvae of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Neotropical Entomology, 39: 608-611, 2010.

ROHDE, C. et al. Selection of entomopathogenic nematodes for the controlo of the fruit fly Ceratitis capitata (Diptera: Tephritidae). Revista Brasileira de Ciências Agrárias, 7: 797-802, 2012.

ROHDE, C. et al. Compatibilidade de nematóides entomopatogênicos e extratos vegetais aquosos visando o controle da mosca-das-frutas Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Semina, 34: 1033-1042, 2013.

SELVAN, S.; CAMPBELL, J. F.; GAUGLER, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology, 62: 278-284, 1993.

SHAPIRO-ILAN, D. I; HAN, R.; DOLINKI, C. Produção de nematóides entomopatogênicos e tecnologia de aplicação. The Journal of Nematology, 44: 206 - 217, 2012.

SHAPIRO-ILAN, D. I., HAZIR, S., LEITE, L. Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. Journal of Nematology, 47:184-189, 2015.

SHAPIRO-ILAN, D. I.; HAZIR, S.; GLAZER, I. Basic and applied research: entomopathogenic nematodes. In: LACEY, L. A. (Ed.). Microbial control of insect and mite pests: from theory to practice. London: Academic Press, 2017. cap. 6, p. 91-105.

SIRJANI, F. O.; LEWIS, E. E.; KAYA, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Biological Control, 38: 124-133, 2009.

TORRINI, G., et al. Entomopathogenic nematodes as potential biocontrol agents against Bactrocera oleae (Diptera: Tephritidae). Biocontrol Science Technology, 30:1-12, 2020.

ULU, T. C., SUSURLUK, I. A. Heat and desiccation tolerances of Heterorhabditis bacteriophora strains and relationships between their tolerances and some bio-ecological characteristics. Invertebrate Survival Journal, 11: 4-10, 2014.

WOODRING, J. L.; KAYA, H. K. Steinernematidae and Heterorhabditidae nematodes: a handbook of techniques. Nemathode Subcommittee on the Southern Regional Project S135 - Entomopathogens for use in Pest Management Systems, Arkansas: Southern Cooperative, 1988. (Series Bulletin, 331).

Downloads

Publicado

21-10-2020

Edição

Seção

Agronomia