INTERCROPPING OF EGGPLANT AND TOMATO AS FUNCTION OF TIMES OF TRANSPLANT AND CROPPING SEASON

Authors

DOI:

https://doi.org/10.1590/1983-21252022v35n204rc

Keywords:

Cropping systems. Solanum lycopersicum. Solanum melongena. Commercial Yield.

Abstract

The use of intercropping system allows crops to better utilize inputs supplied and the productive capacity of the area, which can be advantageous to the farmer. Thus, the aim of this study was to evaluate the production performance of eggplant and industrial tomato intercropped as a function of the date of eggplant transplantation compared with tomato transplantation, in two seasons. Ten dates of eggplant transplantation were evaluated (-30, -25, -20, -15, -10, -5, 0, + 5, +10 and +15 days compared with tomato transplantation), with the first season from February to September 2009 and the second from August 2009 to February 2010. The number of commercial fruits per plant, commercial yield per plant and commercial yield of eggplant and tomato were influenced by the date of transplanting of eggplant. Highest eggplant yields were obtained in the second season, due to the more favorable weather conditions for the development of this crop. Late eggplant transplants resulted in yield losses due to tomato interference. For tomatoes, the later the eggplant was transplanted, the higher the yield. Therefore, it is concluded that the species have a high degree of interference with each other and the variation in the time of eggplant transplantation influenced the production characters of both crops. In terms of production, the intercropping of these species may not be economically viable for the farmer due to negative influences on the growth, development and production of these crops.

Downloads

Download data is not yet available.

References

ANDRIOLO, J. L. Fisiologia da produção de hortaliças em ambiente protegido. Horticultura Brasileira, 18: 26-33, 2000.

BANZATTO, D. A.; KRONKA, S. N. Experimentação Agrícola. 4ed. Jaboticabal, SP: Funep, 2006. 237 p.

BARBOSA, A. P. et al. An agronomic and economic evaluation of lettuce cultivars intercropped with rocket over two cultivation seasons. African Journal of Agricultural Research, 10: 1083-1090, 2015.

BEZERRA NETO, F. et al. Assessment of agroeconomic indices in polycultures of lettuce, rocket and carrot through uni- and multivariate approaches in semi-arid Brazil. Ecological Indicators, 14: 11-17, 2012.

BRITO, A. U. et al. Viabilidade agroeconômica dos consórcios taro com brócolis, couve-chinesa, berinjela, jiló, pimentão e maxixe. Revista Brasileira de Ciências Agrárias, 12: 296-302, 2017.

CECÍLIO FILHO, A. B. et al. Agronomic efficiency of intercropping tomato and lettuce. Anais da Academia Brasileira de Ciências, 83: 1109-1119, 2011.

CECÍLIO FILHO, A. B. et al. Indices of bio-agroeconomic efficiency in intercropping systems of cucumber and lettuce in greenhouse. Australian Journal of Crop Science, 9: 1154-1164, 2015.

CECÍLIO FILHO, A. B.; MAY, A. Produtividade das culturas de alface e rabanete em função da época de estabelecimento do consórcio, em relação a seus monocultivos. Horticultura Brasileira, 20: 501-504, 2002.

CECÍLIO FILHO, A. B.; REZENDE, B. L. A.; DUTRA, A. F. Yield of intercropped lettuce and cucumber as a function of population density and cropping season. Revista Caatinga, 32: 943-951, 2019.

CODY, R. P.; SMITH, J. K. Applied statistics and the SAS programming language. 5 ed. New Jersey: Prentice Hall, 2004. 592 p.

CUNHA-CHIAMOLERA, T. P. L. et al. Gas exchange, photosynthetic pigments, and growth in tomato: lettuce intercropping. Chilean Journal of Agricultural Research, 77: 295-302, 2017.

FILGUEIRA, F. A. R. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. 3. ed. Viçosa, MG: UFV, 2013. 421 p.

FAO - Food And Agriculture Organization Of The United States FAO, IFAD and WFP. The state of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition. Rome: FAO, 2014. 57 p. Disponível em: http://www.fao.org/3/a-i4030e.pdf . Acesso em: 9 set. 2020.

GONG, W. Z. et al. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 53:259-268, 2015.

GÜVENÇ, I.; YILDIRIM, E. Intercropping with eggplant for proper utilisation of Interspace under Greenhouse Conditions. European Journal of Horticultural Science, 70:300–302, 2005.

HORWITH, B. A role for intercropping in modern agriculture. BioSciense, 35: 286-291, 1985.

JANDEL SCIENTIFIC, Table Curve: curve fitting software. Jandel Scientific, Corte Madeira, CA, 280 p. 1991.

MACHADO, A. Q.; ALVARENGA, M. A. R.; FLORENTINO, C. E. T. Produção de tomate italiano (saladete) sob diferentes densidades de plantio e sistemas de poda visando ao consumo in natura. Horticultura Brasileira, 25: 149-153, 2007.

MONTEIRO, M. S. R. Comportamento heterótico e estabilidade fenotípica em híbridos de berinjela (Solanum melongena, L.). Piracicaba, SP: ESALQ, 1975. 81 p.

NASCIMENTO, C. S. et al. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency. PLoS ONE, 13: e0194756, 2018.

NODA, H. Critérios de avaliação de progênies de irmãos germanos interpopulacionais em berinjela (Solanum melongena L.). Piracicaba: ESALQ, 1980.

NWOFIA, G. E. et al. Yield and productivity of eggplant genotypes intercropped with vegetable cowpea in the humid tropics. International Journal of Vegetable Science, 23: 400-410, 2017.

OHSE, S. et al. Viabilidade agronômica de consórcios de brócolis e alface estabelecidos em diferentes épocas. Idesia, 30: 29-37, 2012.

REIS, A. et al. Berinjela (Solanum melongena L.). Brasília, DF: EMBRAPA Hortaliça, 2007. 23 p.

REZENDE, B. L. A. et al. Economic analysis of cucumber and lettuce intercropping under greenhouse in the winter-spring. Annals of the Brazilian Academy of Sciences, 28:1-13, 2011.

RIBAS, R. D. T. et al. Land equivalent ratio in the intercropping of cucumber with lettuce as a function of cucumber population density. Agriculture, 10:88, 2020.

SANDHU, R. K. et al. Optimization of planting dates of Jalapeno pepper (Capsicum annuum ’Jalapeño’ L.) and cantaloupe (Cucumis melo var. cantalupensis Ser.) relay cropped with strawberry (Fragaria × ananassa Duchesne). PLoS ONE, 15: e0236677, 2020.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. 355 p.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre, RS: Artmed, 2006. 888 p.

TRANI, P. E. et al. Hortaliça: recomendação de calagem e adubação para o Estado de São Paulo. Campinas, SP: CATI, 2018. 88 p. (Boletim Técnico, 251).

TRANI, P. E. et al. Berinjela, jiló, pimenta-hortícola e pimentão. In.: RAIJ, B. van et al. (Eds.). Recomendações de adubação e calagem para o estado de São Paulo. Campinas, SP: IAC, 1997. cap. 18, p. 173.

TRANI, P. E.; NAGAI, H.; PASSOS, F. A. Tomate rasteiro (industrial) irrigado. In: RAIJ, B. van et al. (Eds.). Recomendações de adubação e calagem para o estado de São Paulo. Campinas, SP: IAC, 1997. cap. 18, p. 185.

YANG, X. L et al. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica, 56: 884–892, 2018.

ZHAO, M. et al. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC Genomics, 20: 1-19, 2019.

Downloads

Published

04-04-2022

Issue

Section

Agronomy