Soil organic matter in biogenic, intermediate and physicogenic aggregates under agroecological management

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n118rc

Keywords:

Aggregate formation pathways. Compartmentalization of organic carbon. Soil quality.

Abstract

Agroecological management can favor the improvement of soil attributes, especially soil organic matter (SOM) and soil aggregation. The objective of the study was to quantify the carbon contents of the humic and oxidizable fractions of SOM of aggregates from different origins from agroecological management systems. Five experimental areas located in the Integrated Agroecological Production System were evaluated: AFS – Agroforestry System; C-SUN – Coffee in full sun; C-SHA – Shaded coffee; AL-FLE – Cultivation in alleys of Flemingia macrophylla with green beans; and NT – No-tillage. The aggregates were separated, identified, and classified as to their origin or formation pathways into biogenic, intermediate, and physicogenic. The carbon contents of the humic fractions fulvic acid (C-FAF), humic acid (C-HAF) and humin (C-HUMF); and oxidizable fractions (F1 and F2, labile; and F3 and F4, recalcitrant) of SOM were determined. The greatest variations in the carbon values of the humic fractions were observed in the aggregates of the AFS, C-SUN and C-SHA systems. In relation to C-HUMF, the highest contents of this fraction were quantified in the biogenic and intermediate aggregates of the C-SUN, C-SHA and AL-FLE systems. The carbon contents of the oxidizable fractions of SOM showed variability between the management systems, mainly for the F1, F2 and F3 fractions in the aggregates under C-SUN and C-SHA. The C-SUN system showed a higher proportion of more humified and recalcitrant fractions of SOM when compared to the C-SHA system. The management practices maids in the agroecological systems of C-SHA, C-SUN and AFS promoted improvements in soil quality.

Downloads

Download data is not yet available.

References

ALMEIDA, D. L.; RIBEIRO, R. L. D.; GUERRA, J. G. M. Sistema integrado de produção agroecológica (“Fazendinha Agroecológica Km 47”). In: ENCONTRO DE AGRICULTURA ORGÂNICA, 1., 1999, Guaíba, RS. Anais... Guaíba: Agropecuária, 1999. p. 152-159.

BATISTA, I. et al. Caracterização dos agregados em solos sob cultivo no Cerrado, MS. Semina: Ciências Agrárias, 34: 1535-1548, 2013.

BENITES, V. M., MADARI, B., MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro, RJ: Embrapa Solos, 2003. 7 p.

BULLOCK, P.; FEDOROFF, N.; JONGERIUS, A. Handbook for Soil Thin Section Description. Albrighton: Waine Research Publications, 1985. 152 p.

CHAN, K. Y.; BOWMAN, A.; OATES, A. Oxidizible organic carbon fractions and soil quality changes in an Paleustalf under different pasture leys. Soil Science, 166: 61-67, 2001.

FERNANDES, J. C. F. et al. Characterization of biogenic, intermediate and physicogenic soil aggregates of areas in the Brazilian Atlantic Forest. Revista Caatinga, 30: 59-67. 2017.

FERREIRA, C. R. et al. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil and Tillage Research, 198: 1-9, 2020.

GUARESCHI, R. F.; PEREIRA, M. G. Carbono, matéria orgânica leve e frações oxidáveis do carbono orgânico sob sistemas de aleias. Pesquisa Florestal Brasileira, 33: 109-114, 2013.

JOUQUET, P. et al. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32: 53–164, 2006.

LIMA, S. S. et al. Biogenic and physicogenic aggregates under different crops with black oat in Nova Friburgo, Brazil. Revista Caatinga, 33: 299-309, 2020.

LOSS, A. et al. Carbon, nitrogen and natural abundance of 13 C and 15 N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil and Tillage Research, 166: 52–58, 2017.

LOSS, A. et al. Carbono, matéria orgânica leve e frações oxidáveis do carbono orgânico sob diferentes sistemas de produção orgânica. Comunicata Scientiae, 1: 57-64, 2010.

LOSS, A. et al. Soil fertility, physical and chemical organic matter fractions, natural 13C and 15N abundance in biogenic and physicogenic aggregates in areas under different land use systems. Soil Research, 52, 685–697, 2014.

LOSS, A. et al. Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado. Spanish Journal of Agricultural Research, 11: 217-231, 2013.

MACHADO, P. L. O. A. Carbono do solo e a mitigação da mudança climática global. Química Nova, 28: 329-334, 2005.

MELO, T. R. et al. Biogenic aggregation intensifies soil improvement caused by manunes. Soil and Tillage Research, 190: 186-193, 2019.

MOURA, O. V. T. et al. Fósforo em agregados biogênicos e fisiogênicos sob diferentes sistemas de manejo agroecológico. Revista Agrarian, 12: 466-478, 2019.

NEVES, M. C. P. et al. Sistema integrado de produção agroecológica ou Fazendinha Agroecológica do Km 47. In: AQUINO, A.; ASSIS, R. L. (Eds.). Agroecologia: princípios e técnicas para uma agricultura orgânica sustentável. Seropédica, RJ: Embrapa Agrobiologia, 2005. p. 147-172.

PINTO, L. A. S. R. et al. Evolución y acumulación de C-CO2 en agregados biogénicos y fisiogénicos presentes en diferentes tipos de manejos agroecológicos. Revista Acta Agronomica, 67: 494-500, 2018.

PULLEMAN, M. M. et al. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology, 29: 1-15, 2005.

RANGEL, O. J. P. et al. Frações oxidáveis do carbono orgânico de Latossolo cultivado com cafeeiro em diferentes espaçamentos de plantio. Ciência e Agrotecnologia, 32: 429-437, 2008.

ROSSET, J. S. et al. Frações de fósforo e correlação com atributos edáficos emu ma cronossequência de agricultura sob plantio direto. Semina, 37: 3915-3926, 2016.

ROSSI, C. Q. et al. Vias de formação, estabilidade e características químicas de agregados em solos sob sistemas de manejo agroecológico. Pesquisa agropecuária brasileira, 51: 1677-1685, 2016.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5 ed., rev. e ampl. Brasília, DF: Embrapa, 2018. 356 p.

SILVA NETO, E. C. et. al. Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. Semina, 37: 3927-3939, 2016.

SILVA, F. A. S., AZEVEDO, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, 4: 71-78, 2002.

SIQUEIRA NETO, M. et al. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil and Tillage Research, 110: 187-195, 2010.

STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. 2. ed. New York: John Wiley e Sons, 1994. 496 p.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solos. 3.ed. Brasília, DF: Embrapa, 2017. 573 p.

YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications Soil Science and Plant Analysis, 19: 1467-1476, 1988.

Downloads

Published

01-12-2022

Issue

Section

Agricultural Engineering