MANAGEMENT ZONES DESIGN FOR SOYBEAN CROP USING PRINCIPAL COMPONENTS AND GEOSTATISTICS

Authors

  • Ricardo Niehues Buss Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA https://orcid.org/0000-0003-3444-4243
  • Raimunda Alves Silva Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA https://orcid.org/0000-0002-0380-8190
  • Osvaldo Guedes Filho Soil laboratory, Universidade Federal do Paraná, Jandaia do Sul, PR https://orcid.org/0000-0001-8550-8505
  • Glecio Machado Siqueira Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA https://orcid.org/0000-0002-3513-2658

DOI:

https://doi.org/10.1590/1983-21252022v35n420rc

Keywords:

Principal components analysis. Semivariogram. Soil chemical properties. Crop yield. Precision agriculture.

Abstract

In precision agriculture, determining management zones for soil and plant attributes is a complex process that requires knowledge of several variables, which complicates management and decision-making processes. This study evaluated the spatial variability of soybean yield and soil chemical properties using geostatistical and multivariate analyses to define management zones in an Oxisol. The soybean yield and soil chemical properties between 0 to 0.2 and 0.2 to 0.4 m soil depths were sampled at 70 points. Geostatistical and multivariate analyses were then performed on these data. The soil chemical properties showed higher variability at 0.2 to 0.4 m soil depth. The semivariogram parameters of the principal component analysis (PCA) data (PCA 1, PCA 2, and PCA 3) for both depths were more homogeneous than the original data. The maps of soil chemical properties showed high similarity to the soybean yield map. The PCA explained 65.34% (0 to 0.2 m) and 70.50% (0.2 to 0.4 m) of data variability, grouping the soybean yield, organic matter, pH, phosphorous, potassium, calcium, magnesium, and sodium. PCA spatialization allowed for the definition of management zones indicated by PCA 1, PCA 2, and PCA 3 for both depths. The result indicates that the area must be managed using different strategies of soil fertility management to increase soybean yield.

Downloads

Download data is not yet available.

References

ALARCÓN-JIMÉNEZ, M. F. et al. Management zones based on corn yield and soil physical attributes. Agronomia Colombiana, 33: 373-382, 2015.

BITENCOURT, D. G. B. et al. Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physics-chemical properties. Soil & Tillage Research, 156: 63-73, 2016.

BUSS, R. N. et al. Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes. Revista Brasileira de Engenharia Agricola e Ambiental, 23: 446-453, 2019.

BUTTAFUOCO, G. et al. Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field. Precision Agriculture, 18: 37-58, 2017.

CAMBARDELLA, C. A. et al. Field scale variability of soil properties in central Iowa soil. Soil Science of America Journal, 58: 1501-1511, 1994.

CONAB – Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos, safra 2021/22 – 7º levantamento. Brasília, DF: CONAB, 2022. 94 p.

CÓRDOBA, M. A. et al. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering, 146: 95-107, 2016.

FREDDI, O. D. S. et al. Physical-chemical quality of a latossol under direct seeding and soybean-corn succession in the cerrado-amazonian ecotone. Revista Caatinga, 30: 991-1000, 2017.

GAVIOLI, A. et al. Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, 127: 302–310, 2016.

GOLDEN SOFTWARE. Surfer 12: powerful contouring, gridding, and surface mapping. Colorado: Golden Software. 2014, 1056 p.

GUEDES FILHO, O. et al. Geostatistical analysis of crop yield maps in a long term no tillage system. Bragantia, 69: 9-18, 2010.

JEFFERS, J. N. R. An introduction to system analysis: with ecological applications. Edward Arnold Publishers: London. 1978. 198 p.

JIANSHU, L. V. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 244: 72-83, 2019.

LIMA, J. S. S. et al. Variabilidade espacial de atributos químicos de um latossolo vermelhor-amarelo cultivado em plantio direto. Revista Ciência Agronômica, 44: 16-23, 2013.

MASOUD, A. A. et al. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. Journal of African Earth Sciences, 142: 64-81, 2018.

OUMENSKOU, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geology, Ecology, and Landscapes, 3: 1-12, 2018.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <https://www.r-project.org/>. Acesso em: 16 out. 2018.

RAIJ, B. V. et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas,SP: Instituto Agronômico. 2001. 285 p.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. ver. e ampl. Brasília, DF: Embrapa, 2018.

SILVA, A. S. et al. Variabilidade espacial de atributos químicos de um latossolo vermelho-amarelo húmico cultivado com café. Revista Brasileira de Ciência do Solo, 34: 15-22, 2010.

SILVA, D. A. S.; LIMA, J. S. S. Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres, 59: 271-277, 2012.

SILVA, R. A.; SIQUEIRA, G. M. Multifractal analysis of soil fauna diversity indexes. Bragantia, 79: 120-133, 2020.

SIQUEIRA, G. M. et al. Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. Revista Brasileira de Engenharia Agrícola e Ambiental, 19: 439-448, 2015b.

SIQUEIRA, G. M. et al. Spatial distribution of soil apparent electrical conductivity measured by electromagnetic induction and sugarcane yield. Bragantia, 74: 215-223, 2015a.

SIQUEIRA, G. M. et al. O. Multifractal and joint multifractal analysis of soil invertebrate fauna, altitude, and organic carbon. Revista Brasileira de Engenharia Agrícola e Ambiental, 26: 248-257, 2022.

SOBRAL, L. F. et. al. Guia prático para interpretação de resultados de análises de solos. Aracaju, SE: Embrapa Tabuleiros Costeiros, 2015. 13 p.

STATSOFT. Statistica 7.0. Tulsa: StatSoft. 2015, 250 p.

TRIPATHI, R. et al. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, 133: 128-136, 2015.

URIBEETXEBARRIA, A. et al. Apparent electrical conductivity and multivariate analysis of soil properties to assess soil constraints in orchards affected by previous parcelling. Geoderma, 319: 185-193, 2018.

VIEIRA, S. R. et al. Scaling of semivariograms and the kriging estimation of field-measured properties. Revista Brasileira de Ciência do Solo, 21: 525-533, 1997.

VIEIRA, S. R. et al. Variabilidade espacial dos teores foliares de nutrientes e da produtividade da soja em dois anos de cultivo em um latossolo vermelho. Revista Brasileira de Ciência do Solo. 34: 1503-1514, 2010.

VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ V. H.; SCHAEFER, G. R. (Eds.). Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2000. v. 2, cap. 1, p. 1-54.

WARRICK, A. W.; NIELSEN, D. R. Spatial variability of soil physical properties in the field. In: HILLEL, D. (Eds.). Applications of Soil Physics. New York, NY: Academic Press, 1980. v. 1, cap. 13, p. 319-344.

Downloads

Published

20-09-2022

Issue

Section

Agricultural Engineering