IDENTIFICATION OF SOURCES OF RESISTANCE AGAINST CHARCOAL ROT IN COWPEA

Authors

  • Kecia Mayara Galvão de Araújo Collegiate of biological sciences, Universidade Federal do Vale do São Francisco, Petrolina, PE https://orcid.org/0000-0003-2402-6777
  • Luan Felipe Santos do Nascimento Collegiate Agronomic Engineering, Universidade Federal do Vale do São Francisco, Petrolina, PE https://orcid.org/0000-0002-8317-4684
  • Pedro Ivo Silvestre Siqueira e Silva Collegiate Agronomic Engineering, Universidade Federal do Vale do São Francisco, Petrolina, PE https://orcid.org/0000-0003-1257-8814
  • Jerônimo Constantino Borel Collegiate Agronomic Engineering, Universidade Federal do Vale do São Francisco, Petrolina, PE https://orcid.org/0000-0002-5774-5607
  • Kaesel Jackson Damasceno e Silva Embrapa Meio-Norte, Teresina, PI https://orcid.org/0000-0001-7261-216X
  • Francine Hiromi Ishikawa Collegiate Agronomic Engineering, Universidade Federal do Vale do São Francisco, Petrolina, PE https://orcid.org/0000-0002-7491-2657

DOI:

https://doi.org/10.1590/1983-21252022v35n305rc

Keywords:

Cowpea breeding. Germoplasm. Macrophomina phaseolina. Genetic resistance. Vigna unguiculata.

Abstract

Cowpea [Vigna unguiculata (L.) Walp.] is an important socioeconomic crop in Brazil, mainly in the Northeast and more recently in the Midwest of Brazil. Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid, is an important disease in semiarid regions, where edaphoclimatic conditions are favorable to the development of disease. The aim of this study was to evaluate the response of 100 cowpea lines to two isolates of M. phaseolina. The experiments were conducted in a completely randomized design, with five replications (two plants per pot). The main variables evaluated were lesion length and relative growth compared to control (RGCC). Among the evaluated accessions, 15% of the lines were resistant to isolate 59 and 11% of the lines were resistant to isolate CMM 2106 of M. phaseolina. Therefore, these accessions can be used as a source of resistance to M. phaseolina by farmers directly as new cultivars or in future hybridizations of cowpea genetic breeding programs.

Downloads

Download data is not yet available.

References

AMARAL, A. G. G.; NORONHA, M. A. Avaliação de genótipos de feijão-caupi com resistência a Macrophomina phaseolina. In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E 324 PÓS-GRADUAÇÃO DA EMBRAPA TABULEIROS COSTEIROS, 6., Aracaju, 2016. 325 Anais... Aracaju: Embrapa Tabuleiros Costeiros, 2016. p. 22.

BOUKAR, O. et al. Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breeding, 138: 415-424, 2018.

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos safra 2021/22, v. 9 n. 1 primeiro levantamento. Brasília, DF: CONAB, 2021. 86 p.

COHEN, R.; ELKABETZ, M.; EDELSTEIN, M. Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Protection, 85: 46-51, 2016.

CORREIA, K. C.; MICHEREFF, S. J. Fundamentos e desafios do manejo de doenças radiculares causadas por fungos. In: LOPES, U. P. MICHEREFF, S. L.(Eds.). Desafios do manejo de doenças radiculares causadas por fungos. Recife, PE: EDUFRPE, 2018. p. 1-16.

COSER, S. M. et al. Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Frontiers in Plant Science, 8: 1-12, 2017.

CRUCIOL, G. C. D.; COSTA, M. L. N. Influence of Macrophomina phaseolina inoculation methodologies on the performance of soybean cultivars. Summa Phytopathologica, 44: 32-37, 2018.

FAO – Food Agriculture Organization of the United Nations. Countries by commodity. 2018. Disponível em: <http://www.fao.org/faostat/en/#data/QC/visualize>. Acesso em: 5 mai. 2020.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência Agrotecnologia, 35: 1039-1042, 2011.

GARCÍA, M. E. M. et al. Reaction of lima bean genotypes to Macrophomina phaseolina. Summa Phytopathologica, 45: 11-17, 2019.

ISHIKAWA, M. S. et al. Screening of soybean cultivars resistant to black root rot (Macrophomina phaseolina). Summa Phytopathologica, 44: 38-44, 2018.

LIMA, L. R. L. et al. Avaliação de germoplasma de feijão-caupi de porte ereto e semiereto para resistência à Macrophomina phaseolina (Tassi) Goid. In: CONGRESSO BRASILEIRO 368 DE RECURSOS GENÉTICOS, 2., 2012, Belém, PA. Anais... Brasília, DF: Sociedade 369 Brasileira de Recursos Genéticos, 2012. 5 p. 1.

LIMA, L. R. L. et al. Diallel crosses for resistance to Macrophomina phaseolina and Thanatephorus cucumeris on cowpea. Genetics and Molecular Research, 16: gmr16039804, 2017.

LINHARES, C. M. et al. Effect of temperature on disease severity of charcoal rot of melons caused by Macrophomina phaseolina: implications for selection of resistance sources. Europeran Journal of Plant Pathology, 158: 431–441, 2020.

MEDEIROS, A. C. et al. Methods of inoculation of Rhizoctonia solani and Macrophomina phaseolina in melon (Cucumis melo). Summa Phytopathologica, 41: 281-286, 2015.

MUCHERO, W. et al. Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC genomics, 12: 1-14, 2011.

NORONHA, M. et al. Reação de genótipos de feijão-caupi a Macrophomina phaseolina. Tropical Plant Pathology, 35: S213, 2010.

SOUZA, E. M. S. et al. Inoculation methods and agressiveness of Macrophomina phaseolina isolates in cowpea. Ciência Rural, 52: e20210072, 2022.

YOU, M. P.; COLMER, T. D.; BARBETTI, M. J. Salinity drives host reaction in Phaseolus vulgaris (common bean) to Macrophomina phaseolina. Functional Plant Biology, 38: 984-992, 2011.

Downloads

Published

12-07-2022

Issue

Section

Agronomy