AMPLIFICATION AND SELECTION PROFILE OF ISSR MARKERS FOR GENETIC STUDIES IN Calotropis procera

Authors

  • Cibelle Santos Dias Posgraduate Program in Environmental Sciences, Universidade Estadual do Sudoeste da Bahia, Itapetinga, BA https://orcid.org/0000-0001-9694-8485
  • Luiz Henrique Tolentino Santos Postgraduate Program in Animal Science, Universidade Estadual do Sudoeste da Bahia, Itapetinga, BA https://orcid.org/0000-0002-9419-6192
  • Messulan Rodrigues Meira Posgraduate Program in Environmental Sciences, Universidade Estadual do Sudoeste da Bahia, Itapetinga, BA https://orcid.org/0000-0003-2447-342X
  • Elisa Susilene Lisboa dos Santos Deparment of Exact and Natural Sciences, Universidade Estadual do Sudoeste da Bahia, Itapetinga, BA https://orcid.org/0000-0003-3644-3519
  • Carlos Bernard Moreno Cerqueira-Silva Deparment of Exact and Natural Sciences, Universidade Estadual do Sudoeste da Bahia, Itapetinga, BA https://orcid.org/0000-0002-1883-4543

DOI:

https://doi.org/10.1590/1983-21252022v35n325rc

Keywords:

Genetic diversity. Apple of Sodom. Molecular markers. Polymorphism.

Abstract

Sodom apple is a plant species adapted to various ecosystems and has stood out for its economic and ecological importance. We evaluated the amplification profile of 23 ISSR primers and selected polymorphic loci for genetic studies of a natural population of Calotropis procera by collecting and extracting genomic DNA from 33 individuals. Genomic DNA was extracted using the sorbitol protocol and 2% CTAB and the ISSR amplification products were resolved by electrophoresis. Based on the amplification profile, the 23 primers were classified as suitable, moderate, and unsuitable. We described the quality of primers considering the total number of bands, mean bands per primer, percentage of polymorphism, Nei’s genetic diversity (expected heterozygosity – He), assuming Hardy-Weinberg equilibrium and the polymorphic information content (PIC). All ISSR primers showed an amplification profile, which generated 173 bands with an average of 7.5 loci per primer. However, only 18 out of the 23 tested primers allowed visible and high-quality amplification, which were classified as suitable and polymorphic. We also observed a mean of 0.30 and 0.24 for PIC and He estimates, respectively. The DiCA3`RG, TriAGA3`RC, and TriCGC3`RC primers were highly transferable to C. procera (they presented quality for amplification with good reproducibility), with PIC values higher than 0.40, He higher than 0.30, and polymorphism higher than 86%.

Downloads

Download data is not yet available.

References

ALMEIDA, I. V. B. et al. Genetic diversity among Calotropis procera (Aiton) Wt Aiton genotypes according to seed physiological quality. Revista Caatinga, 30: 912-919, 2017.

ARAYA, S. et al. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims). BMC Genomics, 18: 1-19, 2017.

CHAGAS, K. P. T. et al. Seleção de marcadores ISSR e diversidade genética em uma população de Elaeis guineensis. Revista Brasileira de Ciências Agrárias, 10: 147-152, 2015.

COSTA, D. F. et al. Genetic diversity and selection of ISSR primers in a natural population of mangaba (Hancornia speciosa Gomes) (Apocynaceae). Revista Brasileira de Fruticultura, 37: 970-976, 2015.

CRUVINEL, L. A.; MELO, S. N.; LACORTE, G. A. Use of genetic tools in the identification of bacterial communities of artisan cheeses: a systematic review of literature. For Science, 5: 1-10, 2017.

CRUZ, C. D. GENES – a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, 35: 271-276, 2013.

FABRICANTE, J. R.; OLIVEIRA, M. N. A.; SIQUEIRA-FILHO, J. A. Aspecto da ecologia de Calotropis procera (Apocynaceae) em uma área de Caatinga alterada pelas obras do projeto de Integração do Rio São Francisco em Mauriti, CE. Rodriguésia, 64: 647-654, 2013.

GALLEGO-OLEA, R. S. et al. Flavonoides de Calotropis procera R. Br. (Asclepiadaceae). Revista Brasileira de Plantas Medicinais, 18: 627-648, 2008.

GARCEZ, B.S.; CÂMARA, C.S.; VASCONCELOS, V.R. Utilização da flor de seda (Calotropis procera) e do mata-pasto (Senna obtusifolia) na alimentação de ruminantes. Revista Eletrônica Nutritime, 11: 3500-3507, 2014.

IBRAHIM, M. M. et al. Efficiency of RAPD and ISSR markers in assessment of genetic diversity in some Catharanthus roseus L. cultivars grown in Egypt. World Applied Sciences Journal, 26: 107-1415, 2013.

JIMENEZ, H. J. et al. Genetic diversity of the Neotropical tree Hancornia speciosa Gomes in natural populations in Northeastern Brazil. Genetics and Molecular Research, 14: 17749-17757, 2015.

LAZZARO, L. et al. A. A probable anthropic origin of Nerium oleander L. (Apocynaceae) population in Montecristo island (Italy, Tuscany): evidence from loci polymorphism and ISSR analysis. Caryologia, 71: 50-57, 2017.

LIEDE-SCHUMANN, S. et al. A RAPD study of the Sarcostemma group of Cynanchum (Apocynaceae-Asclepiadoideae-Asclepiadeae). Organisms Diversity & Evolution, 13: 15-31, 2012.

MISHRA, P. et al. Population dynamics and conservation implications of Decalepis arayalpathra (J. Joseph and V. Chandras.) Venter., a steno endemic species of Western Ghats, India. Applied Biochemistry and Biotechnology, 176: 1413-1430, 2015.

MOREIRA, F. J. C. et al. Calotropis procera (Ait.) Apocynaceae cultivada em substratos orgânicos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13: 260-264, 2018.

NASCIMENTO, A. L. S. et al. DNA extraction in Mangabeira (Hancornia speciosa Gomes). Nucleus, 14: 97-106, 2017.

PEAKALL, R.; SMOUSE, P. E. GenALEX 6.5: genetic analysis in excel. Population genetic software for teaching and research an update. Bioinformatics, 28: 2537-2539, 2012.

PRIYA, T. A.; MANIMEKALAI, V.; RAVICHANDRAN, P. Intra specific genetic diversity studies on Calotropis gigantea (L) R. Br. – Using RAPD markers. European Journal of Biotechnology and Bioscience, 3: 7-9, 2015.

RANI, R. et al. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clinical Microbiology, 6: 1-6, 2017.

RUSSELL, A. et al. Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae, Vandeae, Orchidaceae): evidence from plastid DNA sequence data. Taxon, 59: 389-404, 2010.

SANTOS, L. F. et al. Marcadores ISSR como ferramenta para avaliação da diversidade genética em Passiflora. Biochemical Genetics, 49: 540-554, 2011.

SENNBLAD, B.; BREMER, B. Classification of Apocynaceae s.l. according to a new approach combining Linnaean and Phylogenetic Taxonomy. Systematic Biology, 5: 389-409, 2002.

SHAHNAWAZ, M. et al. Genetic diversity assessment of Gymnema sylvestre (Retz.) R. Br. ex Sm. populations from Western Ghats of Maharashtra, India. Genetic Resources and Crop Evolution, 59: 125-134, 2012.

SILVA, S. G. A. et al. Estabelecimento e otimizaçao de protocolo para extraçao de DNA de Calotropis procera. In: OLIVEIRA, A. M. et al. (Eds.). Produçao orgânica no semiárido. Mossoró, RN: EdUFERSA, 2016, v. 3, cap. 69, p.653-662.

SOARES, A. N. R. et al. Genetic diversity in natural populations of mangaba in Sergipe, the largest producer State in Brazil. Genetics and Molecular Research, 15: 1-12, 2016.

SOARES, F. S. et al. Diversity and genetic structure of mangabeira (Hancornia speciose Gomes), a fruit species from Cerrado. Semina: Ciências Agrárias, 38: 2478-2488, 2017.

SOBRINHO, M. S. et al.. Reproductive phenological pattern of Calotropis procera (Apocynaceae), an invasive species in Brazil: annual in native areas; continuous in invaded areas of Caatinga. Acta Botanica Brasilica, 27: 456-459, 2013.

TOREZAN, J. M. D. et al. Variabilidade genética de coortes pré e pós-fragmentação de Aspidosperma polyneuron Muell. Arg. (Apocynaceae). Brazilian Archives of Biology and Technology, 48: 171-180, 2005.

XIE, W. et al. Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochemical Systematics and Ecology, 38: 740-749, 2010.

ZOLET, A. C. T. et al. Marcadores Moleculares na Era Genômica: Metodologias e Aplicaçoes. 1. ed. Ribeirao Preto, SP: Sociedade Brasileira de Genética, 2017. 181 p.

Downloads

Published

12-07-2022

Issue

Section

Technical Note