Use of anaerobic filters filled with waste from the ceramics industry in swine wastewater treatment

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n124rc

Keywords:

Efficiency. Chamot. Anaerobic treatment.

Abstract

Research on the use of anaerobic filters as an alternative material to gravel is fundamental, especially if they are low cost and highly efficient in the treatment of swine wastewater (SWW). This study aimed to evaluate the efficiency of anaerobic filters filled with waste from the ceramic industry (WCI) as an alternative material to gravel in swine wastewater treatment. The experimental set-up consisted of three anaerobic polyvinyl chloride filters filled with WCI. A randomized block experimental design was used, with four treatments (evaluations of effects at 30, 60, 90, and 120 days) and three blocks, in a scheme of repeated measures over time. The univariate procedure was employed, and we sought to evaluate only the profile of the change in each response variable, between each evaluation time point. The anaerobic filter filled with WCI is a promising option in the treatment of swine effluents from small farms, presenting over 120 days of operation and average removals of 20%–50% of the color, 40%–70% of total solids, 45%–75% of turbidity, 45%–55% of total nitrogen, and 33%–45% of total phosphorus.

Downloads

Download data is not yet available.

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.

AMORIM, F. et al. Unidades combinadas RAFASAC para tratamento de água residuária de suinocultura – parte II nutrientes. Engenharia Agrícola, 35: 931-940, 2015.

BAETTKER, E. C. et al. Materiais alternativos como meio suporte de filtros anaeróbios para tratamento de esgoto sanitário sintético. Engenharia Sanitária e Ambiental, 23: 1091-1102, 2018.

BENDER, A. F.; SOUZA, J. B.; VIDAL, C. M. S. Tecnologias avançadas de tratamento visando à remoção de cor e fenol de efluente de indústria de celulose e papel. Ciências Florestais, 29: 571-582, 2019.

BOLDS, S. A. et al. Impacts of a large invasive mammal on water quality in riparian ecosystems. Journal of Environmental Quality, 50: 441-453, 2021.

CAMPOS, L. E. F.; PETTER, C. O.; KAUTZMANN, R. M. Filtro anaeróbio: uso de resíduo de construção como material suporte. Revista De Ciências Ambientais, 2: 5-13, 2008.

CHENG, D. et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of hazardous materials, 387: 1-12, 2020.

CHERNICHARO, C. A. L. Reatores anaeróbios: princípios do tratamento biológico em águas residuárias. 2. ed. Belo Horizonte, MG: DESA/UFMG, 2007. 359 p.

CHHETRI, T. et al. Wastewater Treatment Using Novel Magnetic Nanosponges. Water, 14: 1-12, 2022.

CHO, J. H.; LEE, J. E.; RA, C. S. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater. Journal of Hazardous Materials, 180: 535-541, 2010.

DAN, N. H.; RENE, E. R.; LE LUU, T. Removal of nutrients from anaerobically digested swine wastewater using an intermittent cycle extended aeration system. Frontiers in Microbiology, 11: 1-11, 2020.

EMERICK, T. et al. Ultrasound-assisted electrocoagulation process applied to the treatment and reuse of swine slaughterhouse wastewater. Journal of Environmental Chemical Engineering, 8: 1-10, 2020.

FERNANDES, W. V. et al. Avaliação da remoção de matéria orgânica de efluente de tanque séptico utilizando filtro anaeróbico preenchido com Luffa cylindrica como meio de suporte. Revista Eletrônica de Gestão e Tecnologias Ambientais, 3: 1-13, 2015.

FERREIRA, A. et al. Exploring different pretreatment methodologies for allowing microalgae growth in undiluted piggery wastewater. Agronomy, 12: 1-16, 2022.

FIA, F. R. L. et al. Remoção de compostos fenólicos em reatores anaeróbios de leito fixo com diferentes materiais suporte. Revista Brasileira de Engenharia Agrícola e Ambiental, 14: 1079-1086, 2010.

HU, H. et al. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresource Technology, 315: 1-11, 2020.

LI, X. et al. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review. Bioresource Technology, 318: 1-9, 2020.

LI, S. et al. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges, Journal of Hazardous Materials, 440: 1-18, 2022.

LIMA, P. M. et al. Avaliação do ciclo de vida do gerenciamento prospectivo de RSU com base no planejamento integrado de gestão em Campo Grande, Brasil. Waste Management, 90: 59-71, 2019.

MATOS, A. T. Manual de análise de resíduos sólidos e águas residuárias. 1. ed., Viçosa, MG: Editora UFV, 2015. 149 p.

MATOS, A. T.; MAGALHÃES, M. A.; SARMENTO, A. P. Perda de carga em filtros orgânicos utilizados no tratamento de água residuária de suinocultura. Revista Engenharia Agrícola, 30: 527-537, 2010.

MORES, R. et al. Remove of phosphorous and turbidity of swine wastewater using electrocoagulation under continuous flow. Separation and Purification Technology, 171: 112-117, 2016.

NAGARAJAN, D. et al. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource technology, 289: 1-12, 2019.

NANDORF, R. J. et al. Performance of filters composed of banana stalk in swine wastewater treatment. Revista Caatinga, 34: 479-485, 2021.

OZA, E. F. et al.Treatment of swine wastewater using anaerobic filters with different types of support media. Bioscience Journal, 35: 561-569, 2019.

PIVELI, R. P.; KATO, M. T. Qualidade das águas e poluição: aspectos físico-químicos. 1. ed. São Paulo, SP: ABES, 2005. 285 p.

PROVOLO, G. et al. Effect of pig and cattle slurry application on heavy metal composition of maize grown on different soils. Sustainability, 10: 1-16, 2018.

SEGANFREDO, M. A. A gestão ambiental na suinocultura. Brasília, DF: Embrapa Suínos e Aves, 2007. 302 p.

STEEL, R. G.; TORRIE, J. H.; DICKEY, D. A. Principles and procedures of Statistics. A Biometrical Aproach. 3. ed. MacGraw-Hill Company. USA, 1997. 666 p.

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. Disponível em: <https://www.r-project.org/>. Acesso em: 26 Abr. 2021.

SHIM, S. et al. Simultaneous removal of pollutants and recovery of nutrients from high-strength swine wastewater using a novel integrated treatment process. Animals, 10: 1-20, 2020.

SILVA, P. C; CAMPOS, C. M. M. Desempenho de um filtro anaeróbio de fluxo ascendente como unidade de tratamento para efluente de suinocultura. Ambiência Guarapuava, 14: 561-578, 2018.

TONETTI, A. L.; CORAUCCI FILHO, B.; STEFANUTTI, R. Pós-tratamento de efluente de filtros anaeróbios operados com baixo tempo de detenção hidráulica por escoamento superficial no solo. Engenharia Sanitária e Ambiental, 17: 7-12, 2012.

TONETTI, A. L. et al. Avaliação de partida de filtros anaeróbios tendo bambu como material de recheio. Revista Brasileira de Engenharia Sanitária e Ambiental, 16: 11-16, 2011.

TONON, D. et al. Wastewater treatment by anaerobic filter and sand filter: Hydraulic loading rates for removing organic matter, phosphorus, pathogens and nitrogen in tropical countries. Ecological Engineering, 82: 583-589, 2015.

VARMA, V. S. et al. Dairy and swine manure management–Challenges and perspectives for sustainable treatment technology. Science of The Total Environment, 778: 1-18, 2021.

VON SPERLING, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos (Princípios do Tratamento Biológico de Águas Residuárias). vol. 1. Belo Horizonte, MG: DESA-UFMG, 2005. 452 p.

WEN, S. et al. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Bioresource Technology, 222: 33-38, 2016.

YOTOVA, G. et al. Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies. Molecules, 24, 1-15, 2019.

ZHOU, Q. et al. Effects of copper ions on removal of nutrients from swine wastewater and release of dissolved organic matters in duckweed systems, Water Research, 158: 171–181, 2019.

Downloads

Published

01-12-2022

Issue

Section

Technical Note