Discriminant analysis based on sheep carcass conformation and finishing scores
DOI:
https://doi.org/10.1590/1983-21252023v36n121rcKeywords:
Multivariate methods. Santa Inês sheep. Carcass classification.Abstract
Carcass classification consists of grouping animals with similar carcass characteristics. When the groups are defined a priori, as in the case of conformation and finishing scores, the interest is to identify the contribution of each variable used in separating the groups. Therefore, discriminant analysis was used to discriminate Santa Inês animals according to the conformation and carcass finishing scores (score 2 = regular, score 3 = good) and to identify the variables that most contribute to the differentiation. The conformation and carcass finishing scores vary from 1 to 5. This study used scores 2 and 3, considering that the evaluated animals ranged between these two respective scales. The database consisted of information from 122 uncastrated Santa Inês sheep submitted to the confinement regime, of which 24 variables related to the carcass of the animals were recorded. Data were submitted to the Mardia test to verify multivariate normality, followed by the nonparametric k-nearest neighbor (k-NN) test. The stepwise procedure selected a particular subset of variables, and the Mahalanobis Distance (D²) was used to assess the separation of groups (p-value ˂ 0.05). The variables with the highest discriminatory power for the carcass conformation scores were cold carcass weight (CCW), external carcass length (ECL), and neck (NEC), for carcass finishing were live weight at slaughter (LWS), ECL, and thoracic perimeter (TP). The multivariate discriminant analysis proved efficient in allocating the animals in their groups of origin.
Downloads
References
ALKARKHI, A. F.; ALQARAGHULI, W. A. A. Applied Statistics for Environmental Science with R. In: ALKARKHI, A. F.; ALQARAGHULI, W. A. A. (Eds.). Discriminant analysis. Elsevier, 2020. v. 1, cap. 10, p. 173-190.
ALONZO, M.; ROTH, K.; ROBERTS, D. Identifying santa barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sensing Letters, 4: 513-521, 2013.
ALVES, M. F.; LOTUFO, A. D. P.; LOPES, M. L. M. Seleção de variáveis stepwise aplicadas em redes neurais artificiais para previsão de demanda de cargas elétricas. Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, 1: 1-6, 2013.
BARBON, A. P. A. C. et al. Storage time prediction of pork by Computational Intelligence. Computers and Electronics in Agriculture, 127: 368-375, 2016.
BARBON, A. P. A. C. et al. Development of a flexible Computer Vision System for marbling classification. Computers and Electronics in Agriculture, 142: 536-544, 2017.
CARO, I. et al. Conformation characteristics of suckling lambs carcasses from the Spanish local breeds Churra and Castellana and the non-native breed Assaf determined using digital photographs. Small Ruminant Research, 160: 89-94, 2018.
CEZAR, M. F.; SOUSA, A. H. Carcaças ovinas e caprinas. 1. ed. João Pessoa, PB: UFCG, 2007. 120 p.
DIMAURO, C. et al. Use of the canonical discriminant analysis to select SNP markers for bovine breed assignment and traceability purposes. Animal Genetics, 44: 377-382, 2013.
ELMASRY, G. et al. Quality classification of cooked , sliced turkey hams using NIR hyperspectral imaging system. Journal of Food Engineering, 103: 333-344, 2011.
HAIR JR, J. et al. Análise multivariada de dados. 6. ed. Porto Alegre, RS: Bookman, 2009. 682 p.
JEON, H. et al. Discrimination of origin of sesame oils using fatty acid and lignan profiles in combination with canonical discriminant analysis. JAOCS, Journal of the American Oil Chemists’ Society, 90: 337–347, 2013.
JONES, A. G. et al. Using a lamb’s early-life liveweight as a predictor of carcass quality. Animal, 15: 1-8, 2021.
MAESSCHALCK, R.; JOUAN-RIMBAUD, D.; MASSART, D. L. The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50: 1-18, 2000.
MARDIA, K. V.; KENT, J. T.; BIBBY, J. M. Multivariate Analysis. 1. ed. London: Academic Press, 2000. 518 p.
OLATUNJI, O. O. et al. Property-based biomass feedstock grading using k-Nearest Neighbour technique. Energy, 190: 1-19, 2019.
PAN, Y. et al. A new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy. Knowledge-Based Systems, 189: 1–11, 2020.
PARK, B. et al. Discriminant analysis of dual-wavelength spectral images for classifying poultry carcasses. Computers and Electronics in Agriculture, 33: 219–231, 2002.
RESTLE, J. et al. Silagem de diferentes híbridos de milho para produção de novilhos superjovens. Revista Brasileira de Zootecnia, 35: 2066-2076, 2006.
ROSA, B. L. et al. Correlações entre medidas corporais e caracteristicas das carcaças de tourinhos Nelore terminados em confinamento. Boletim de Indústria Animal, 71: 371–380, 2014.
ROSENBLATT, M. Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics, 27: 832–837, 1956.
SANTOS, J. R. . et al. Efeito da suplementação na composição física e centesimal da paleta, do costilhar e do pescoço de cordeiros Santa Inês terminados em pastejo. Revista Brasileira de Medicina Veterinária e Zootecnia, 62: 906-913, 2010.
SENRA, L. F. A. C. et al. Estudo sobre métodos de seleção de variáveis em DEA. Pesquisa Operacional, 27: 191-207, 2007.
SMITH, G. Step away from stepwise. Journal of Big Data, 5: 2-12, 2018.
TAHERI-GARAVAND, A. et al. Real-time nondestructive monitoring of Common Carp Fish freshness using robust vision-based intelligent modeling approaches. Computers and Electronics in Agriculture, 159: 16–27, 2019.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).