High resistance levels in brazilian Plutella xylostella populations: needs for adjustments in field concentration

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n106rc

Keywords:

Insecticide. Control failure. Resistance monitoring.

Abstract

Plutella xylostella cause severe damage on cruciferous plants all over the world. Farmers in several regions of Brazil report increasing inefficiency of chemical control, even when using high insecticide concentrations. We therefore assume that regional populations of these insects develop multiple resistances. We evaluate here the susceptibility of brazilian diamondback moth populations to the Premio® (Chlorantraniliprole), Dipel® (Bacillus thuringiensis var. Kurstaki) and Lannate® BR (Oxime Methylcarbamate) insecticides, frequently used in Brazil. Susceptibility bioassays with five field-collected and two laboratory diamondback moth populations were conducted with increasing concentrations of insecticides up to ten times above the recommended concentration. Extremely high and region-dependent resistances were found in field populations against Chlorantraniliprole and B. thuringiensis, with Resistance Ratios up to 370.0 times for certain populations. For Oxime Methylcarbamate, we were not able to do Probit analyses for the field populations because of very low mortality rates. Laboratory populations showed resistance to the three tested insecticides with all LC50concentrations exceeding the recommended doses by at least 3 times. Our results show strong and variable resistance to the three tested insecticides according to the region of origin. To maintain efficient pest control in a large country like Brazil, local levels of resistance need therefore to be monitored by the authorities and indications for concentrations of insecticides to be used in the field should be adjusted to each region, to prevent massive spread of insecticides in the field.

Downloads

Download data is not yet available.

Author Biography

José Gomes da Silva Filho, Department of Phytossanity, Universidade Federal de Pelotas, Pelotas, RS

ORCID 0000-0001-8417-3774

References

ARIAS, T. et al. Diversification times among Brassica (Brassicaceae) crops suggest hybrid after 20 million years of divergence. American Journal of Botany, 101: 86-91, 2014.

BARROS, R.; VENDRAMIM, J. D. Efeito de cultivares de repolho utilizadas para a criação de Plutella xylostella (L.) no desenvolvimento de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Anais da Sociedade Entomológica do Brasil, 28: 469-476, 1999.

CASTELO BRANCO, M.; AMARAL, P. S. T. Inseticidas para o controle da traça das crucíferas: como os agricultores os utilizam no Distrito Federal. Horticultura Brasileira, 20: 410-415, 2002.

CASTELO BRANCO, M.; MELO, C. A. Resistência a abamectin em populações de traça-das-crucíferas. Horticultura Brasileira, 20: 541-543, 2002.

CHEDIAK, M. et al. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of yellow fever mosquito Aedes aegypti. Memórias do Instituto Oswaldo Cruz, 111: 311-321, 2016.

DAVIDSON, G.; ZAHAR A. R. The practical implications of resistance in malaria vectors to insecticides. Bulletin of the World Health Organization, 49: 475-483, 1973.

FEYEREISEN, R. Molecular biology of insecticide resistance. Toxicology Letters, 82-83:83-90, 1995.

FINNEY, D. J. Probit analysis. 3. ed. London:, Cambridge University Press, 1971, 272 p.

FOURIE, H. et al. Brassicaceae-based management strategies as an alternative to combat nematode pest. A synopsis. Crop Protection, 80: 21-41, 2016.

FURLONG, M. J.; WRIGHT, D. J.; DOSDALL, L. M. Diamondback moth ecology and management: problems, progress and prospects. Annual Review of Entomology, 58: 517-541, 2013.

GEORGHIOU, G. P.; TAYLOR, C. E. Genetic and biological influences in the evolution of insecticide resistance. Journal of Economical Entomology, 70:319-323, 1997.

GUEDES, R. N. C. Insecticide resistance, control failure likelihood and the First Law of Geography. Pest Management Science, 73:479-484, 2017.

IRAC - Insecticide Resistance Action Committee. Susceptibility test method 018 (Plutella xylostella). 2010. Disponível em: <https://irac-online.org/methods/plutella-xylostella-larvae/>. Acesso em: 14 abr. 2018.

HU, Z. et al. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 13: 2452-2459, 2014.

JIANG, T. et al. Monitoring field populations of Plutella xylostella (Lepidoptera: Plutellidae) for resistance to eight insecticides in China. Florida Entomologist, 98: 65-73, 2015.

LI, Z. et al. Biology, ecology and management of the diamondback moth in China. Annual Review of Entomology, 61: 277-296, 2016.

LIMA NETO, J. E. et al. Resistance monitoring of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to risck reduced insecticides and cross resistance to spinetoram. Phytoparasitica, 44: 631-640, 2016.

LIU, M. Y.; TZENG, Y. J.; SUN, C. N. Insecticide resistance in the diamondback moth. Journal of Economical Entomology, 75: 153-155, 1982.

MELO, R. A. C. et al. Caracterização e diagnóstico da cadeia produtiva de brassícas nas principais regiões produtoras brasileiras. 2017. Disponível em: <https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1083914/caracterizacao-e-diagnostico-de-cadeia-produtiva-de-brassicas-nas-principais-regioes-produtoras-brasileiras >. Acesso em: 08 set. 2019.

MOHAN, N.; GUJAR, G. T. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India. Bulletin of Entomological Research, 92: 489-498, 2002.

MOTA-SANCHEZ, D.; BILLS, P. S.; WHALON, M. E. Arthropod Resistance to pesticide: Status and overeview. In: Wheller, W. B. (Ed.). Pesticides in agriculture and environment. New York-NY, Marcel Dekker, 2002, Cap. 8 .p. 241-272.

NANSEN, C. et al. Behavioral avoidance – will physiological insecticide resistance level of insects strains affect their oviposition and movement responses? PloS One, 11: 1-12, 2016.

OLIVEIRA, A. C. et al. Resistance of Brazilian diamondback moth populations to insecticides. Scientia Agricola, 68: 154-159, 2011.

RIBEIRO, L. M. S. et al. Fitness costs associated with Field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bulletin of Entomological Research, 104: 88-96, 2014.

SANTOS, V. C. et al. Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the State of Pernambuco, Brazil. Neotropical Entomology, 40: 264-270, 2011.

SARFRAZ, M.; KEDDIE, B. A. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Applied Entomology, 129: 149-157, 2005.

SAS - Statistical Analysis System. SAS/STAT version 9.0. SAS Institute, Cary, NC, 2002.

SHELTON, A. M. et al. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. Journal of Economical Entomology, 86: 697-705, 1993.

SILVA, J. E. et al. Baseline susceptibility to chlorantraniliprole of brazilian populations of Plutella xylostella. Crop Protection, 35: 97-101, 2012.

SINIARD, D. J.; WADE, M. J.; DRURY, D. W. Evolutionary genetics of insecticide resistance and the effects of chemical rotation. BioRxiv, s/v.: 1-41, 2016

SPARKS, T. C. et al. Resistance and cross-resistance to spinosyns – a review and analysis. Pesticide Biochemistry and Physiology, 102: 1-10, 2012.

STEINBACH, D. et al. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 63: 14–22, 2015.

TALEKAR, N. S.; SHELTON, A. M. Biology, ecology, and management of the diamondback moths. Annual Review of Entomology, 38: 275-301, 1993.

TROCZKA, B. et al. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology, 42: 873-880, 2012.

TROCZKA, B. J. et al. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. NeuroToxicology, 60: 224-233, 2016.

VILAS BÔAS, G. L. et al. Inseticidas para o controle da traça-das-crucíferas e impactos sobre a população natural de parasitoides. Horticultura Brasileira, 22: 696-699, 2004.

WALLS, L. et al. Food security, food safety and healthy nutrition: are they compatible? Global Food Security, 21: 69-71, 2019.

XIA, Y. et al. Resistance monitoring for eight insecticides in Plutella xylostella in Central China. Crop Protection, 63: 131-137, 2014.

YU, S. J.; NGUYEN, N. S. Detection on biochemical characterization of insecticides resistance in the diamondback moth. Pesticide Biochemistry and Physiology, 44: 74-81, 1982.

ZAGO, H. B. et al. Resistance and Behavioral response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Management Science, 70: 488-495, 2014.

ZALUCKI, M. P. et al. Estimating the economic cost of one of the world’s major insect pest, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string. Journal of Economical Entomology, 105: 1115-1129, 2012.

ZHANG, S. et al. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pesticide Biochemistry and Physiology, 133: 18-46, 2016.

ZHAO, J. Z. et al. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to Spinosad, Indoxcarb, and Emamectin Benzoate. Journal of Economical Entomology, 99: 176-181, 2006.

Downloads

Published

01-12-2022

Issue

Section

Agronomy