Use of multifunctional microorganisms in corn crop
DOI:
https://doi.org/10.1590/1983-21252023v36n212rcKeywords:
Rhizobacteria. Fungus. Co-inoculation. Yield. Zea mays.Abstract
In the composition of the soil microbiome, there are numerous microorganisms capable of promoting plant growth, better known as plant growth-promoting microorganisms. The study aimed to determine the effects of multifunctional microorganisms, alone or in combination, on shoot, root, and total biomass production, gas exchange, macronutrient content, yield components, and grain yield of corn plants. The experiment was carried out in a greenhouse in a completely randomized design, with four replications. Twenty-six treatments consisted of isolated or combined microbiolization of corn seeds with the rhizobacteria Bacillus sp. (BRM 32109, BRM 32110, and BRM 63573), Burkholderia cepacea (BRM 32111), Pseudomonas sp. (BRM 32112), Serratia marcenses BRM 32113, Serratia sp. (BRM 32114), Azospirillum brasilense (Ab-V5), and Azospirillum sp. (BRM 63574), an isolated of fungus Trichoderma koningiopsis (BRM 53736), and a control treatment (without the application of microorganisms). At seven and 21 days, two more applications of the same treatments were carried out in the soil and the plants, respectively. The microorganisms applied alone or in combination promoted significant increases of 49% in corn plant biomass, 30% in gas exchange, 36% in macronutrient content, and 33% in grain yield. Isolates BRM 32114, Ab-V5, BRM 32110, and BRM 32112 and the combinations BRM 32114 + BRM 53736, BRM 63573 + Ab-V5, and BRM 32114 + BRM 32110 promoted better benefits to corn, allowing us to infer that the use of beneficial microorganisms significantly affects the development of corn plants.
Downloads
References
ARAÚJO, F. F.; GUABERTO, L. M.; SILVA, I. F. Bioprospecção de rizobactérias promotoras de crescimento em Brachiaria brizantha. Revista Brasileira de Zootecnia, 41: 521-527, 2012.
AWAIS, M. et al. Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatalysis and Agricultural Biotechnology, 11: 312-321, 2017.
AZIZI, S. et al. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology And Management, 497: 1-15, 2021.
BLANCO-VARGAS, A. et al. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, 6: e05218, 2020.
BONETTI, J. A.; FINK, J. R. Manejo e conservação da água e do solo. Lavras MG: Editora UFLA, 2020. 151 p.
CHAGAS, L. F. B. et al. Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Revista Agri-Environmental Sciences, 3: 10-18, 2017.
CLAESSEN, M. E. C. Manual for Methods of Soil Analysis. 2 ed. Rio de Janeiro, RJ, Embrapa Solos, 1997. 212 p.
COSTA, R. R. G. F. et al. Eficiência do inoculante com Azospirillum brasilense no crescimento e produtividade do milho safrinha. Pesquisa Agropecuária Tropical, 45: 304-311, 2015.
DARTORA, J. et al. Adubação nitrogenada associada à inoculação com Azospirillum brasilense e Herbaspirillum seropedicae na cultura do milho. Revista Brasileira de Engenharia Agrícola e Ambiental, 17: 1023-1029, 2013.
FILIPPI, M. C. C. et al. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological control, 58: 160-166, 2011.
FREIRE, F. M. et al. Produtividade econômica e componentes da produção de espigas verdes de milho em função da adubação nitrogenada. Revista Brasileira de Milho e Sorgo, 9: 213-222, 2010.
GOMES, M. et al. Microrganismos promotores do crescimento de plantas . 1. ed. Sete Lagoas , MG: Embrapa milho e sorgo, 2016. 51 p.
GUPTA, A. E. et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: a review. International Journal Of Environmental Research And Public Health, 19: 1-29, 2022.
HASHEM, A. et al. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal Of Biological Sciences, 26: 1291-1297, 2019.
KADO, C. J.; HESKETT, M. G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60: 969-976, 1970.
KASSAMBARA, A. Factoextra: Extraia e Visualize os Resultados das Análises de Dados Multivariados R Package Versão 1.0.3. 2015.
KUMAR, R. et al. Physiological and genomic evidence supports the role of Serratia quinivorans PKL: 12 as a biopriming agent for the biohardening of micropropagated picrorhiza kurroa plantlets in cold regions. Genomics, 113: 1448-1457, 2021.
LIMA, J. V. et al. Rhizobacteria modify root architecture and improve nutrient uptake in oil palm seedlings despite reduced fertilizer. Rhizosphere, 19: 1-10, 2021.
LOPES, C. V. A.; ALBUQUERQUE, G. S. C. Agrotóxicos e seus impactos na saúde humana e ambiental: uma revisão sistemática. Saúde em Debate, 42: 518-534, 2018.
MANRIQUE, A. E. R. et al. Conditioning and coating of Urochloa brizanthaseeds associated with inoculation of Bacillus subtilis. Pesquisa Agropecuária Tropical, 49: e55536, 2019.
MALAVOLTA, E. ; VITTI, G. C. ; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2 ed. Piracicaba, SP: POTAFOS, 1997. 319 p.
NASCENTE, A. S. et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science And Pollution Research, 24: 2956-2965, 2017.
PARENTE, T. L. et al. Potássio em cobertura no milho e efeito residual na soja em sucessão. Revista Agro@Mbiente On-Line, 10: 193-200, 2016.
PRASAD, A. et al. Qualitative and quantitative estimation for phosphate solubilizing ability of Trichoderma isolates: a natural soil health enhancer. Materials Today: Proceedings, p. 1-7, abr. 2021.
REIS, A. F. B. et al. Seed inoculation with Azospirillum brasilense in the U.S. soybean systems. Field Crops Research, 283: 1-9, 2022.
REZENDE, C. C. et al. Microrganismos multifuncionais: utilização na agricultura. Research, Society And Development, 10: e50810212725, 2021a.
REZENDE, C. C. et al. Physiological and agronomic characteristics of the common bean as affected by multifunctional microorganisms. Semina, 42: 599-618, 2021b.
RODRIGUES, G. L. et al. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiological Research, 254: 1-12, 2022.
ROLIM, R. R. et al. Produtividade e rentabilidade do milho em função do manejo da adubação na região do Cariri-CE. Revista Científica Rural, 20: 204-221, 2018.
SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.
SANTOS, R. M. et al. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: characteristics and applications. Frontiers In Sustainable Food Systems, 4: 1-15, 2020.
SAS INSTITUTE. The SAS system for windows. Estados Unidos, 1999. 1 CD-ROM.
SHAIKH, et al. Rhizobacteria that Promote Plant Growth and their Impact on Root System Architecture, Root Development, and Function. Acta Scientific Microbiology, 4: 53-62, 2022.
SILVA, C. F. B. et al. Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 782-787, 2018.
SILVA, M. A. et al. Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga, 33: 619-632, 2020.
SILVA, V. N. et al. Growth promotion and induction of anthracnose resistance by Trichoderma spp. in cucumber. Pesquisa Agropecuária Brasileira, 46: 1609-1618, 2011.
SINGH, S.; SINGH, V.; PAL, K. Importance of microorganisms in agriculture. Climate and Environmental changes: Impact, Challenges and Solutions, 1: 93-117, 2017.
USDA - United States Department of Agriculture. PSD Online Data Commodities and Products. 2022b. Disponível em: <https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQueryhttp://www.usdabrazil.org.br/home/>. Acesso em: 06 set. 2022.
USDA - United States Department of Agriculture. Regional Corn Imports, Production, Consumption, and Stocks. 2022a. Disponível em: <https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads>. Acesso em: 06 set. 2022.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).