Assessment of morphophysiological and genotypic diversity of endophytic bacteria isolated from rice (Oryza sativa L.) plants

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n405rc

Keywords:

ice. Plant growth promotion. PCR 16S-23S rDNA. Extracellular enzymes.

Abstract

Rice production in Brazil incurs high costs due to the significant use of agrochemicals. Some plant growth-promoting rhizobacteria (PGPR) can be used as alternative to fertilizers and phytosanitary products. Thus, the objective of this study was to characterize endophytic bacteria isolated from roots of rice plants. The isolates were characterized based on colony morphology, antibiotic resistance, carbon sources utilization, enzyme activity (catalase, amylase, protease, cellulase, and lipase), inorganic phosphate solubilization, and the 16S-23S rDNA intergenic region. Morphologically, 68% of the isolates presented a rapid growth rate, 46% presented abundant mucus production, and 77% formed viscous colonies. All isolates were resistant to nalidixic acid and 16% presented resistance to streptomycin. The majority (90%) used monosaccharides and disaccharides in carbon source assays. Most of the isolates (95%) were positive for catalase and 63.6% were positive for amylase, protease, lipase, and cellulase activities. Additionally, 59% of them were able to solubilize phosphate. The mean enzymatic index for amylase, cellulase, and protease was 2.8, 3.5, and 1.7 respectively. The similarity analysis revealed high diversity among the isolates, with similarity indices of 70% (based on morphological characteristics) and 60% (based on the intergenic region 16S-23S rDNA). Considering morphophysiological and genotypic characteristics, three promising isolates should be evaluated in studies under field conditions for the potential development of bioproducts to replace industrially manufactured inputs in rice crops.

Downloads

Download data is not yet available.

References

ALORI, E. T.; GLICK, B. R.; BABALOLA, O. O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8: 1-8, 2017.

AUSUBEL, F. M. et al. Short Protocols in Molecular Biology. 4. ed. New York: John Wiley and Sons, 1999. 1512 p.

BADRI, D. V. et al. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. The Journal of Biological Chemistry, 288: 4502-4512, 2013.

CAPPUCCINO, J. G.; SHERMAN, N. Microbiology: a laboratory manual. 10. ed. Boston, MA: Pearson/Benjamin Cummings, 2014. 567 p.

CARDOSO, A. A. et al. Characterization of rhizobia isolates obtained from nodules of wild genotypes of common bean. Brazilian Journal of Microbiology, 48: 43-50, 2017.

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. Brasília, v 9 – Safra 2021/22, n. 10 - Décimo levantamento, p. 1-88, julho 2022. Disponível em:<https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de graos/item/download/43195_4877b01240feea94340214d6c9e37afa>. Acesso em: 18 jan. 2022.

COSTA, F. M. et al. Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeon pea from the eastern edge of the Brazilian Pantanal. Genetics and Molecular Research, 13: 469-482, 2014.

DINESH, R. et al. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research, 173: 34-43, 2015.

DURÁN, D. et al. Biodiversity of Slow-Growing Rhizobia: The Genus Bradyrhizobium. In: GONZÁLEZ, M. B. R.; GONZALEZ-LÓPEZ, J. (Eds.). Beneficial plant-microbial interactions: ecology and applications. Boca Raton, FL: CRC Press, 2013. cap. 2, p. 20-37.

FERREIRA, E. P. B.; KNUPP, A. M.; MARTIN-DIDONET, C. C. G. Crescimento de cultivares de arroz (oryza sativa L.) influenciado pela inoculação com bactérias promotoras de crescimento de plantas. Bioscience Journal, 30: 655-665, 2014.

GLICK, B. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 5: 1-15, 2012.

GUIMARÃES, S. L.; BALDANI, V. L. D. Produção de arroz inoculado com bactérias diazotróficas marcadas com resistência induzida ao antibiótico estreptomicina. Ciência Rural, 56: 125-132, 2013.

GUJRAL, M. S. et al. Colonization and plant growth promotion of Sorghum seedlings by endorhizospheric Serratia sp. Acta Biologica Indica, 2: 343-352, 2013.

HAHN, L. et al. Growth promotion in maize with diazotrophic bacteria in succession with ryegrass and white clover. American-Eurasian Journal of Agricultural & Environmental Sciences, 14: 11-16, 2014.

HANKIN, L.; ANAGNOSTAKIS, S. L. The use of solid media for detection of enzymes production by fungi. Mycologia, 67: 597-607, 1975.

HARA, F. A. Z.; OLIVEIRA, L. A. Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos de Iranduba, Amazonas. Pesquisa Agropecuária Brasileira, 40: 667-672, 2005.

HERNÁNDEZ-FORTE, I. et al. Caracterizacion fenotipica de aislados de rizobios procedentes de la leguminosa forrajera Canavalia ensiformis. Cultivos Tropicales, 33: 21-28, 2012.

HERNÁNDEZ-FORTE I.; NÁPOLES-GARCÍA, M. C. Rizobios residentes en la rizosfera de plantas de arroz (Oryza sativa L.) cultivar INCA LP-5. Cultivos Tropicales, 38: 39-49, 2017.

HUNGRIA, M.; SILVA, K. Manual de curadores de germoplasma – microorganismos: rizóbios e bactérias promotoras do crescimento vegetal. 1. ed. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2011. 21 p.

IKEDA, A. C. et al. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microbial Ecology, 65: 154-160, 2013.

JADHAV, H. P.; SAYYED, R. Z. Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Science & Report, 3: 135-136, 2016.

JI, S. H.; GURURANI, M. A.; CHUN, S. C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169: 83-98, 2014.

LEALEM, F.; GASHE, B. A. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). Journal of Applied Bacteriology, 77: 348-352, 1994.

LIU, F. P. et al. Isolation and characterization of phosphate-solubilizing bactéria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50: 927-937, 2014.

LIU, S. et al. Structure and ecological roles of a novel exopolysaccharide from the arctic sea ice bacterium pseudoaLteromonas sp. Strain SM20310. Applied and Environmental Microbiology, 79: 224-230, 2013.

MAREQUE, C. et al. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Annals of Microbiology, 65: 1057-1067, 2015.

MARTINS, L. M. V. et al. Características relativas ao crescimento em meio de cultura e a morfologia de colônias de “Rizóbio”. Seropédica, RJ: EMBRAPA-CNPAB, 1997. 14 p.

MBAI, F. N. et al. Isolation and Characterisation of Bacterial Root Endophytes with Potential to Enhance Plant Growth from Kenyan Basmati Rice. American International Journal of Contemporary Research, 3: 25-40, 2013.

MELO, M. et al. Cellulolytic and lipolytic fungi isolated from soil and leaf litter samples from the Cerrado (Brazilian Savanna). Revista de Biología Tropical, 66: 237-245, 2018.

MELO, I. S. Isolamento de Agentes de biocontrole da rizosfera. In: MELO, I. S.; AZEVEDO, J. L. (Eds.) Controle Biológico. Jaguariúna, SP: Embrapa Meio Ambiente, 2000. v. 3, p. 15-55.

NAKAMURA, K. et al. Microbial resistance in relation to catalase activity to oxidative stress induced by photolysis of hydrogen peroxide. Microbiology and Immunology, 56: 48–55, 2012.

OSÓRIO-FILHO, B. D. et al. Rhizobia enhance growth in rice plants under flooding conditions. American-Eurasian Journal of Agricultural & Environmental Sciences, 14: 707-718, 2014.

SILVA, C. F. et al. Enzymatic and antagonistic potential of bacteria isolated from typical fruit of Cerrado in Minas Gerais State, Brazil. Acta Scientiarum-Agronomy, 37: 367-374, 2015.

LUPO, A.; COYNE, S.; BERENDONK, T. U. Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Frontiers in Microbiology. 3: 1-13, 2012.

SZILAGYI-ZECCHIN, V. J. et al. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, 4: 1-9, 2014.

TOKAJIAN, S. et al. 16S–23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads. Frontiers in Microbiology, 7: 1-8, 2016.

ZHAN, G. et al. A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS One, 9: 1-8, 2014.

Downloads

Published

28-09-2023

Issue

Section

Agronomy