Formation of guava seedlings under irrigation with water of different cationic natures and salicylic acid

Authors

  • Claudiene Moura de Queiroga Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0003-3688-1623
  • Geovani Soares de Lima Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-9960-1858
  • Rafaela Aparecida Frazão Torres Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0001-5266-5811
  • Francisco Jean da Silva Paiva Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-7603-4782
  • Lauriane Almeida dos Anjos Soares Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0002-7689-9628
  • Hans Raj Gheyi Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0002-1066-0315

DOI:

https://doi.org/10.1590/1983-21252023v36n318rc

Keywords:

Salt stress. Phytohormone. Psidium guajava L.

Abstract

The objective of this study was to evaluate gas exchange, biomass, and quality of guava seedlings as a function of the cationic nature of the water used in irrigation and foliar application of salicylic acid. The experiment was carried out in a greenhouse in Pombal, PB, Brazil, using a randomized block design, in a 6 × 4 factorial scheme with six cationic compositions of irrigation water [S1 - Control (supply water); S2 - Na+; S3 - Ca2+;     S4 - Na++Ca2+; S5 - Mg2+, and S6 - Na++Ca2++Mg2+], associated with four concentrations of salicylic acid (0, 1.3, 2.6, and 3.9 mM), with 3 replicates. Plants in control (S1) were irrigated with water of electrical conductivity (ECw) of 0.3 dS m-1, while in the other treatments were irrigated with different types of water and had an ECw of 4.3 dS m-1, consisting of different cations, in the form of chloride. In the seedling formation phase, guava plants were sensitive to calcic water, which resulted in a marked decrease in their growth. Stomatal conductance, transpiration, and biomass accumulation of guava seedlings were more affected by variation in electrical conductivity than by cationic nature of the water. Salicylic acid at concentrations of 2.9 and 1.9 mM increased stomatal conductance and stem dry biomass, respectively, of guava seedlings. Water with ECw of 4.3 dS m-1 allowed the formation of guava seedlings with acceptable quality for transplanting to the field, regardless of the cationic nature of the water.

Downloads

Download data is not yet available.

References

ABDI, N. et al. Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. Plants, 11: e1853, 2022.

BEZERRA, I. L. et al. Morphophysiology of guava under saline water irrigation and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 32-37, 2018.

BLATT, M. R. Ca2+ signalling and control of guard-cell volume in stomatal movements. Current Opinion in Plant Biology, 3: 196–204, 2000.

CHEN, Z.; SILVA, H.; KLESSIG, D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883-1886, 1993.

DICKSON, A.; LEAF, A. L.; HOSNER, J. F. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36: 10-13, 1960.

DINIZ, G. L. et al. Phytomass and quality of yellow passion fruit seedlings under salt stress and silicon fertilization. Comunicata Scientiae, 11: e3400, 2020.

FERNANDES, E. A. et al. Cell damage, gas exchange, and growth of Annona squamosa L. under saline water irrigation and potassium fertilization. Semina: Ciências Agrárias, 42: 999-1018, 2021.

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37: 529-535, 2019.

GUPTA, B.; HUANG, B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014: e701596, 2014.

IBGE - Instituto Brasileiro de Geografia e Estatística. Produção agrícola - lavoura permanente. Disponível em: <https://cidades.ibge.gov.br/brasil/pesquisa/15/11954. 2019>. Acesso em: 22 nov. 2022.

HANNACHI, S. et al. Salt stress induced changes in photosynthesis and metabolic profiles of one tolerant (‘Bonica’) and one sensitive (‘Black Beauty’) eggplant cultivars (Solanum melongena L.). Plants, 11: 1-32, 2022.

HNILIČKOVÁ, H. et al. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63: 362-367, 2017.

HOLANDA, J. S. et al. Qualidade da água para irrigação. In: GHEYI, H. R. et al. (Eds.). Manejo da salinidade na agricultura: Estudos básicos e aplicados. 2. ed. Fortaleza, CE: INCTSal, 2016. cap. 4, p. 35-47.

JOON-SANG, L. The mechanism of stomatal closing by salicylic acid in Commelina communis L. Journal of Plant Biology, 41: 97-102, 1998.

KHALVANDI, M. et al. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7: e05908, 2021.

KHAN, M. I. R.; POOR, P.; JANDA, T. Salicylic acid: a versatile signaling molecule in plants. Journal of Plant Growth Regulation, 41: 1887-1890, 2022.

KUMAR, M. et al. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods, 10: e752, 2021.

LACERDA, C. N. et al. Morphophysiology and production of guava as a function of water salinity and salicylic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 26: 451-458, 2022a.

LACERDA, C. N. et al. Post-harvest fruit quality of grafted guava grown under salt stress and salicylic acid application. Revista Brasileira de Engenharia Agrícola e Ambiental, 26: 713-721, 2022b.

LIMA, G. S. et al. Cationic nature of water and hydrogen peroxide on the formation of passion fruit seedlings. Revista Caatinga, 34: 904-915, 2021a.

LIMA, G. S. et al. Cell damage, water status and gas exchanges in castor bean as affected by cationic composition of water. Revista Caatinga, 32: 482-492, 2019.

LIMA, G. S. et al. Gas exchange, chloroplast pigments and growth of passion fruit cultivated with saline water and potassium fertilization. Revista Caatinga, 33: 184-194, 2020.

LIMA, G. S. et al. Potassium and irrigation water salinity on the formation of sour passion fruit seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental, 25: 393-401, 2021b.

LIMA, L. G. S. et al. Modelos matemáticos para estimativa de área foliar de goiabeira (Psidium guajava L.). In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA, 64. 2012, São Luiz. Anais... São Luiz: UFMA, 2012. p. 1-2.

MANTOVANI, A. A method to improve leaf succulence quantification. Brazilian Archives of Biology and Technology, 42: 9-14, 1999.

MEDINA, J. C. et al. Goiaba. 2. ed. Campinas, SP: ITAL, 1991. 17 p. (Frutas tropicais, 6).

MOHAMED, I. A. A. et al. Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants, 9: 1-19, 2020.

NAHAR, K. et al. Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Frontiers in Plant Science, 7: e1104, 2016.

NOVAIS, R. D.; NEVES, J. C. L.; BARROS, N. D. Ensaio em ambiente controlado. In: OLIVEIRA, A. J., et al. (Eds.). Métodos de pesquisa em fertilidade do solo, Brasília, DF: EMBRAPA, 1991. v. 1, cap. 2, p. 89-253, 1991.

OLIVEIRA, F. T. et al. Respostas de porta-enxertos de goiabeira sob diferentes fontes e proporções de materiais orgânicos. Comunicata Scientiae, 6:17-25, 2015.

PAIVA, F. J. S. et al. Gas exchange and production of passion fruit as affected by cationic nature of irrigation water. Revista Caatinga, 34: 926-936, 2021.

PAN, T. et al. Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51: 791-825, 2021.

PINHEIRO, F. W. A. et al. Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Revista Ciência Agronômica, 53: e20217816, 2022.

POÓR, P. et al. Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. Photosynthetica, 57: 367-376, 2019.

RICHARDS, L. A. Diagnosis and improvement of saline and alkali soils. Washington: U.S, Department of Agriculture. 1954. 160 p.

ROQUE, I. A. et al. Biomass, gas exchange and production of cherry tomato cultivated under saline water and nitrogen fertilization. Revista Caatinga, 35: 686-696, 2022.

SILVA JÚNIOR, L. G. A.; GHEYI, H. R.; MEDEIROS, J. F. Composição química de águas do cristalino do Nordeste Brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 3: 11-17, 1999.

SILVA, A. A. R. et al. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga, 33:1092, 2020.

SOARES, L. A. A. et al. Physiological changes of pomegranate seedlings under salt stress and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 25: 453-459, 2021.

SOUZA, L. P. et al. Formation of ‘Crioula’ guava rootstock under saline water irrigation and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental, 20: 739-745, 2016.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa, 2017. 573 p.

TESTER, M.; DAVENPORT, R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91: 503-527, 2003.

WENG, X. et al. Calcium regulates growth and nutrient absorption in poplar seedlings. Frontiers in Plant Science, 13: e887096, 2022.

XAVIER, A. V. O. et al. Gas exchange, growth and quality of guava seedlings under salt stress and salicylic acid. Revista Ambiente & Água, 17: e2816, 2022.

XU, D. et al. Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5: 1-8, 2017.

Downloads

Published

18-07-2023

Issue

Section

Agricultural Engineering