Proximate composition, minerals, tannins, phytates and cooking quality of commercial cowpea cultivars

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n322rc

Keywords:

Vigna unguiculata. Nutritional quality. Mineral composition. Anti-nutritional factors. Fast cooking.

Abstract

Cowpea is a socioeconomically important legume in the Northeast region of Brazil, and the most grown and consumed type of bean, representing the main source of low-cost vegetable protein for rural and urban populations in this region. The objective of this work was to characterize the proximate composition, minerals, tannins, phytic acid, and cooking quality of whole grains of cowpea from the commercial cultivars BRS Aracê, BRS Inhuma, and BRS Xiquexique. Grain samples of the cultivars were ground in a zirconium ball mill and the flour was used for analysis. The proximate composition was carried out according to the AOAC methodology. The minerals were determined by nitro-perchloric digestion and reading in a flame atomic absorption spectrophotometer. The anti-nutritional factors tannins and phytic acid were determined by extraction and reading in a spectrophotometer. Cooking quality was assessed using an electric pressure cooker and then a Mattson cooker. A completely randomized experimental design was used, with three treatments (cultivars) and three replications. The data were subjected to analysis of variance and the means were compared by the Tukey's test (p<0.05). The cowpea cultivars showed significant differences (p<0.05) for most characteristics evaluated and were similar in terms of ash, lipids, total dietary fiber, and most macrominerals. The results showed that grains of the cultivars BRS Aracê and BRS Xiquexique are excellent sources of dietary fiber, proteins, and minerals and present high cooking quality, while grains of the cultivar BRS Inhuma stood out regarding carbohydrates, soluble dietary fibers, total energetic value, and low levels of factors, anti-nutritional tannins and phytic acid.

Downloads

Download data is not yet available.

References

ADDY, S. N. T. T. et al. Genetic studies on the inheritance of storage-induced cooking time in cowpeas [Vigna unguiculata (L.) Walp]. Frontiers in Plant Science, 11: 1-9, 2020.

ALUDI, M. S.; ASANTE, I. K.; MENSAH, H. K. Evaluation of nutritional and phytochemical variability of cowpea recombinant inbred lines under contrasting soil moisture conditions in the Guinea and Sudan savanna agro-ecologies. Helyion, 6: 1-10, 2020.

AOAC - Association of Official Analytical Chemistry. Official methods of analysis. 19th ed. Gaithersburg, 2012. 3000 p.

BENEVIDES, C. M. J. et al. Fatores antinutricionais em alimentos: revisão. Segurança Alimentar e Nutricional, 18: 67-79, 2011.

BEZERRA, J. M. et al. Composição química de oito cultivares de feijão-caupi. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 14: 41-47, 2019.

BIAMA, P. K. et al. Nutritional and technological characteristics of new cowpea (Vigna unguiculata) lines and varieties grown in eastern Kenya. Food and Nutrition Sciences, 11: 416-430, 2020.

BRASIL. Ministério da Saúde. Instrução Normativa IN n°. 75 de 8 de outubro de 2020. Estabelece os requisitos técnicos para declaração da rotulagem nutricional nos alimentos embalados. Diário oficial da União de 9 de outubro de 2020. Disponível em: <http://antigo.anvisa.gov.br/documents/10181/3882585/IN+75_2020_.pdf/7d74fe2d-e187-4136-9fa2-36a8dcfc0f8f>. Acesso em: 25 abri. 2023.

BRASIL. Ministério da Saúde. Resolução RDC n°. 54 de 12 de novembro de 2012. Regulamento técnico de informação nutricional complementar. Diário Oficial da União de 12 de novembro de 2012. Disponível em: <https://bvsms.saude.gov.br/ bvs/saudelegis/anvisa/2012/rdc0054_12_11_2012.html>. Acesso em: 10 abr. 2022.

BRASIL. Ministério da Saúde. Resolução RDC n°. 269, de 22 de setembro de 2005. Dispõe sobre o regulamento técnico sobre ingestão diária recomendada (IDR) de proteínas, vitaminas e minerais. Diário Oficial da União de 2 de setembro de 2005. Disponível em: <https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/resolucao-rdc-no-269-de-22-de-setembro-de-2005.pdf/view>. Acesso em: 10 abr. 2022.

ÇAKIR, O. et al. Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology, 39: 1-12, 2019.

CARDONA-AYALA, C. E.; ARAMENDIZ-TATIS, H.; CAMACHO, M. M. E. Adaptability and stability for iron and zinc in cowpea by AMMI analysis. Revista Caatinga, 34: 590-598, 2021.

CARVALHO, B. L. et al. New strategy for evaluating grain cooking quality of progenies in dry bean breeding programs. Crop Breeding and Applied and Biotechnology, 17: 115-117, 2017.

COELHO, R. C. et al. Expanding information on the bioaccessibility and bioavailability of iron and zinc in biofortified cowpea seeds. Food Chemistry, 347: 1-9, 2021.

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos, setembro 2021. Brasília, DF: CONAB, 8: 12-14, 2021.

CRUZ, G. L. et al. Alimentos ultraprocessados e o consumo de fibras alimentares no Brasil. Ciência & Saúde Coletiva, 26: 4153-4161, 2021.

CUNHA, E. M. F. et al. Compostos fenólicos e atividade antioxidante em linhagens de feijão-caupi. In: SILVA-MATOS, R. R. S.; OLIVEIRA, A. R. F.; CORDEIRO, K. V. (Eds.) A transformação da agronomia e o perfil do novo profissional. Ponta Gross, PR: Editora Atena, 2020. cap. 1, p. 1-6.

DE-PAULA, C. D.; JARMA-ARROYO, S.; ARAMENDIZ-TATIS, H. Caracterización nutricional y determinación de ácido fítico como factor antinutricional del frijol caupí. Agronomía Mesoamericana, 29: 29-40, 2018.

DIAS-BARBOSA, C. Z. M. C. et al. Selection of cowpea elite lines for iron and zinc biofortification. Current Nutrition and Food Science, 17: 48-58, 2021.

DIOUF, A. et al. Improving nutritional quality of cowpea (Vigna unguiculata) by soaking process. International Journal of Food Science and Nutrition Engineering, 10: 37-41, 2020.

EASHWARAGE, I. S.; HERATH, H. M. T.; GUNATHILAKE, K. G. T. Dietary fibre, resistant starch and in-vitro starch digestibility of selected eleven commonly consumed legumes (mung bean, cowpea, soybean and horse gram) in Sri Lanka. Research Journal of Chemical Sciences, 7: 1-7, 2017.

FARIAS, J. T. F. et al. Efeitos e benefícios da ingestão de fibras alimentares na prevenção de doenças crônicas: uma revisão de literatura. International Journal of Nutrology, 11: S24-S327, 2018.

FREIRE-FILHO, F. R. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Teresina, PI: Embrapa Meio-Norte, 2011. 84 p.

FREITAS, T. K. T. et al. Potential of cowpea genotypes for nutrient biofortification and cooking quality. Revista Ciência Agronômica, 53:1-11, 2022.

FROTA, K. M. G. et al. Utilização da farinha de feijão-caupi (Vigna unguiculata (L.) Walp.) na elaboração de produtos de panificação. Ciência e Tecnologia de Alimentos, 30: 44-50, 2010.

GARCIA, O. E.; INFANTE, B.; RIVERA, C. J. Comparison of dietary fiber values between two varieties of cowpea (Vigna unguiculata (L.) Walp.) of Venezuela, using chemical and enzymatic gravimetric methods. Revista Chilena de Nutrición, 37: 455-460, 2010.

GERRANO, A. S. et al. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, 19: 155-166, 2019.

GONÇALVES, F. V. et al. Protein, phytate and minerals in grains of commercial cowpea genotypes. Anais da Academia Brasileira de Ciências, 92: 1-16, 2020.

HIGASHIJIMA, N. S. et al. Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, 27: 1-16, 2020.

JAYATHILAKE, C. et al. Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98: 4793-4806, 2018.

KHALID, I. I.; ELHARDALLOU, S. B. Factors that compromise the nutritional value of cowpea fluor and its protein isolates. Food and Nutrition Sciences, 7: 112-121, 2016.

KIRSE, A.; KARKLINA, D. Integrated evaluation of cowpea (Vigna unguiculata (L.) Walp.) and maple pea (Pisum sativum var. arvense L.) spreads. Agronomy Research, 13: 956-968, 2015.

LÓPEZ-MORALES, D. et al. Impact of agronomic biofortification with zinc on the nutrient content, bioactive compounds, and antioxidant capacity of cowpea bean (Vigna unguiculata L. Walpers). Agronomy, 10:1-19, 2020.

MATTSON, S. The cookability of yellow peas: a colloidchemical and biochemical study. Acta Agriculturae Suecana, 2: 85-190, 1946.

RIOS, M. J. B. L. et al. Chemical, granulometric and technological characteristics of whole flours from commercial cultivars of cowpea. Revista Caatinga, 31: 217-224, 2018.

SAS - Statistical Analysis System. SAS/Stat Software 12.1. Cary, NC, USA: SAS Institute Inc., 2012.

SILVA, D. J.; QUEIROZ, A. C. Análise de alimentos: métodos químicos e biológicos. 3 ed. Viçosa, MG: UFV, 2002. 235 p.

SILVA, K, J, D.; ROCHA, M. M.; MENEZES-JÚNIOR, J. A. Socioeconomia. In: BASTOS. E. A. (Eds.). A Cultura do feijão-caupi no Brasil. Teresina, PI: Embrapa Meio-Norte; Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento, 2016. cap. 1, p. 6-12.

SILVA, V. M. et al. Agronomic biofortification of cowpea with zinc: variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Journal of Trace Plant Physiology and Biochemistry, 162: 378-387, 2021a.

SILVA, V. M. et al. Application of sodium selenate to cowpea (Vigna unguiculata L.) increases shoot and grain Se partitioning with strong genotypic interactions. Journal of Trace Elements in Medicine and Biology, 67: 1-12, 2021b.

Downloads

Published

18-07-2023

Issue

Section

Food Engineering