Nitrogen and potassium interaction in oxisol soils under BRS 394 wheat cultivation

Authors

  • Juliana Terezinha Sasso Paludo Faculty of Agronomy and Zootechnic, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0001-7712-0623
  • Edna Maria Bonfim-Silva Institute of Agricultural and Technological Sciences, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil https://orcid.org/0000-0003-1989-8431
  • Tonny José Ara´´ujo da Silva Institute of Agricultural and Technological Sciences, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil https://orcid.org/0000-0002-6978-7652
  • Luana Aparecida Menegaz Meneghetti Faculty of Agronomy and Zootechnic, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0001-5184-3858
  • Niclene Ponce Rodrigues de Oliveira Faculty of Agronomy and Zootechnic, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0002-6649-3835

DOI:

https://doi.org/10.1590/1983-21252024v3711728rc

Keywords:

Triticum aestivum. Nitrate reductase. Nitrogen fertilization. Potassium fertilization.

Abstract

Potassium and nitrogen are essential nutrients and their uptake and distribution within plants must be coordinated for optimum growth and development. We evaluated the interaction between nitrogen and potassium fertilization on the development of BRS 394 wheat, and the nitrate and ammonium levels in Oxisol soils. A 52 factorial design was used in a greenhouse experiment, with four replicates in randomized blocks, corresponding to five doses of nitrogen (0, 70, 140, 210, and 280 mg dm-3) and five doses of potassium (0, 50, 100, 150, and 200 mg dm-3). The variables analyzed were shoot dry mass; chlorophyll index; nitrate reductase; nitrogen, potassium, and protein concentrations in the leaves; and nitrate and ammonium levels in the soil. There was an interaction between nitrogen and potassium doses on the chlorophyll index, with nitrogen doses between 152.67 and 163.53 mg dm-3 and potassium of 191.50 mg dm-3 providing the highest chlorophyll index. The other variables were influenced separately by the nitrogen dose. The highest nitrate reductase enzyme activity was 1.30 µmol NO h-1 g-1 Fresh Matter, which was reached at a nitrogen dose of 95 mg dm-3. Shoot dry mass, concentrations of nitrogen and total protein in the leaves, and concentrations of nitrate and ammonium in the soil were adjusted to the linear regression model as a function of nitrogen fertilization. The dose of nitrogen that promoted the best development of BRS 394 wheat and the highest concentrations of nitrate and ammonium in Oxysol soils was 280 mg dm-3.

Downloads

Download data is not yet available.

Author Biography

Edna Maria Bonfim-Silva, Institute of Agricultural and Technological Sciences, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil

References

ALBRECHT, J. C. et al. Trigo BRS 394 – nova cultivar para o cerrado. In: REUNIÃO DA COMISSÃO BRASILEIRA DE PESQUISA DE TRIGO E TRITICALE, 10., 2016, Londrina. Anais... Londrina: Comissão Brasileira de Pesquisa de Trigo e Triticale, 2016, 5 p.

BAKAEVA, N. P. Nitrogen content and nitrate reductase activity in winter wheat leaves with the use of nitrogenic fertilizers. Samara State Agricultural Academy Bulletin, 5: 13-19, 2020.

BATISTA, V. V. et al. Componentes de Rendimento e Produtividade de Cultivares de Trigo submetidas ao Parcelamento ou não de Nitrogênio. Revista Ciência Agrícola, 18: 1-7, 2020.

BAZZO, J. H. B. et al. Adubação nitrogenada de cobertura via solo e foliar na produtividade e composição mineral de grãos de trigo. Revista Terra & Cultura: Cadernos de Ensino e Pesquisa, 36: 181-194, 2020.

CARVALHO, J. M. G. et al. Nitrogen and potassium in production, nutrition and water use efficiency in wheat plants. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de La Agricultura, 43: 442-451, 2016.

CECON, D. A.; SILVA, A. R. Introdução à metodologia de Superfícies de resposta. Viçosa, MG: UFV, 38 p, 2011.

CARLETTO, R. et al. Influência do regime de cortes sobre a produção e valor nutricional de trigo cv. BRS Umbu para forragem. Revista de Ciências Agroveterinárias, 19: 254-262, 2020.

COSKUN, D.; BRITTO, D. T.; KRONZUCKER, H. J. The nitrogen–potassium intersection: membranes, metabolism, and mechanism. Plant, Cell & Environment, 40: 2029-2041, 2017.

FANG, X. M. et al. Effects of fertilizer application rate and planting density on photosynthetic characteristics, yield and yield components in waxy wheat. Cereal Research Communications, 46: 169-179, 2018.

FREITAS, C. D. et al. Nitrogen and potassium fertilization on the development and chlorophyll index of irrigated wheat in the Cerrado, Central Brazil. Australian Journal of Crop Science, 12: 44-50, 2018.

HAGEMAN, R. H.; REED, A. J. Nitrate reductase from higher plants. Methods in Enzymology, 69: 270-280, 1980.

KANT, S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Seminars in Cell & Developmental Biology, 74: 89-96, 2018.

KONG, L. et al. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports, 7: 1-14, 2017.

LARGE, E. C. Growth stages in cereals - illustration of the feekes scale. Plant Pathology, 3: 128-129, 1954.

LITTELL, R. C.; MOTT, G. O. Computer assisted design and analysis of response surface experiments in agronomy. Soil and Crop Science of Society of Florida Proceedings, 34: 94-97, 1975.

LIU, M. et al. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Research, 248:701-720, 2020.

MAJEROWICZ, N. et al. Fisiologia vegetal: curso prático. 1. ed. Rio de janeiro, RJ: Âmbito Cultural, 2003. 138 p.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional de plantas: princípios e aplicações. 2. ed. Piracicaba, SP: Potafos, 1997, 230 p.

MANCIPE-MUÑOZ, E. A. et al. Productividad y valor nutricional de forraje de cebada y trigo del trópico alto colombiano. Agronomía Mesoamericana, 32: 271-292, 2021.

MEHRABI, F.; SEPASKHAH, A. R. Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat. Agricultural Water Management, 223: 1-16, 2019.

MELERO, M. M. et al. Coberturas vegetais e doses de nitrogênio em trigo sob sistema plantio direto. Pesquisa Agropecuária Tropical, 43: 343-353, 2013.

MENDES-SANTOS, R.; KANDASAMY, S.; CID-RIGOBELO, E. Ammonium and nitrate levels of soil inoculated with Azospirillum brasilense in maize. African Journal of Agricultural Research, 12: 863-870, 2017.

MIAO, Y. F.; WANG, Z. H.; LI, S. X. Relation of nitrate N accumulation in dryland soil with wheat response to N fertilizer. Field Crops Research, 170: 119-130, 2015.

MORAIS, L. P. et al. Nitrogen and potassium in the cultivation of Piatã grass in Brazilian Cerrado soil. Revista Brasileira de Engenharia Agrícola e Ambiental, 20: 984-989, 2016.

PRAVALIE, R. Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 220: 10-129, 2021.

RADDATZ, N. et al. Coordinated transport of nitrate, potassium, and sodium. Frontiers in Plant Science, 11: 1-18, 2020.

RAIJ, B. van et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas, SP: Instituto Agronômico, 2001. 284 p.

R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. 2018.

SCHLICHTING, A. F. et al. Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 19: 1148-1151, 2015.

SHI, Z. et al. Combined nitrogen and phosphorus management based on nitrate nitrogen threshold for balancing crop yield and soil nitrogen supply capacity. Agriculture, Ecosystems and Environment, 337, 1-12, 2022.

SOIL SURVEY STAFF. Keys to soil taxonomy. 13th. ed. [s. l.]: USDA Natural Resources Conservation Service, 2022. 410 p.

TAIZ, L. et al. Fisiologia e Desenvolvimento Vegetal. 6. ed. Porto Alegre, RS: Artmed, 2017. 858 p.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa Solos, 574 p, 2017.

VIANA, E. M.; KIEHL, J. C. Doses de nitrogênio e potássio no crescimento do trigo. Bragantia, 69: 975-982, 2010.

WAFULA, D. et al. Impacts of Long-Term Irrigation of Domestic Treated Wastewater on Soil Biogeochemistry and Bacterial Community Structure. Applied and Environmental Microbiology, 81: 7143-7158, 2015.

WROBEL, F. L. et al. Qualidade da silagem de trigo produzida sob níveis de adubação nitrogenada em dois estádios fenológicos. Revista de Ciências Agroveterinárias, 17: 539-546, 2018.

ZHANG, S. et al. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, northwest China. Agriculture, Ecosystems and Environment, 209: 89-99, 2015.

Downloads

Published

21-12-2023

Issue

Section

Scientific Article