Genetic potential of maize populations derived from commercial hybrids for interpopulation breeding

Authors

DOI:

https://doi.org/10.1590/1983-21252024v3711736rc

Keywords:

Zea mays L. Genetic Parameters. Selection Index. Reciprocal Recurrent Selection.

Abstract

Our objective was to evaluate the genetic potential of two maize populations derived from commercial hybrids for beginning a reciprocal recurrent selection (RRS) program. For this, 280 interpopulation half-sib (HS) progenies were produced from two populations (140 HS from each population), which were derived from the selfing of the commercial hybrids AS1598 (Pop1) and RB9210 (Pop2). We then evaluated the 280 HS progenies, the two base populations, and the two hybrids for grain yield (GY) and ear and plant architecture traits in southwestern Goias during the 2020 winter season. Variance components and genetic values of each progeny were estimated using the REML/BLUP (Restricted Maximum Likelihood/Best Linear Unbiased Prediction) methodology. Genetic gains by selection of the top 20% of progenies were predicted using two strategies: i) selection for GY and ii) selection for GY and days to silking (DTS) simultaneously. We observed genetic variability in both populations for all tested traits; therefore, it is possible to obtain genetic gains from the interpopulation improvement of both Pop1 and Pop2. The genetic gain estimates with the selection based on GY were 9.03 and 3.45% for Pop1 and Pop2, respectively. Simultaneous selection for GY and DTS resulted in positive (>4%) genetic gains for GY in both populations and decreased the cycle in Pop1, but we did not observe any alteration of the cycle in Pop2. We concluded that both populations derived from commercial hybrids have genetic potential for interpopulation improvement using RRS.

Downloads

Download data is not yet available.

References

BATES, D. et al. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67: 1-48, 2015.

BERILLI, A. P. C. G. et al. Response to the selection in the 11th cycle of reciprocal recurrent selection among full-sib families of maize. Acta Scientiarum. Agronomy,35: 435-441, 2013.

CHAIKAM, V. et al. Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics, 132: 3227-3243, 2019.

COELHO, I. G. et al. Multi-trait multi-environment diallel analyses for maize breeding. Euphytica, 216: 1-17, 2020.

CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. 2022. Disponível em: <https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos>. Acesso em: 26 out. 2022.

COMSTOCK, R. E.; ROBINSON, H. F.; HARVEY, P. H. A breeding procedure designed to make maximum use of both general and specific combining ability. Agronomy Journal, 41: 360-367, 1949.

COVARRUBIAS-PRIETO, J., HALLAUER, A. R.; LAMKEY, K. R. Intermating F2 populations of maize. Genetika, 21: 111-126, 1989.

DONÁ, A. A. et al. Genetic parameters and predictive genetic gain in maize with modified recurrent selection method. Chilean Journal of Agriculture Research, 72: 33-39, 2012.

ERENSTEIN, O. et al. Global maize production, consumption and trade: trends and R&D implications. Food Security, 14: 1295- 1319, 2022.

FALCONER, D. S.; MACKAY, T. F. C. Introduction to quantitative genetics. 4. ed. Edinburgh: Longman Group Limited, 1996. 464 p.

FARIA, S. V. et al. Phenotypic and molecular characterization of a set of tropical maize inbred lines from a public breeding program in Brazil. BMC Genomics, 23, 1-17, 2022.

FRITSCHE-NETO, R. et al. Updating the ranking of the coefficients of variation from maize experiments. Acta Scientiarum. Agronomy, 34: 99-101, 2012.

FRITSCHE-NETO, R.; MORÔ, G. V. Cultivares. In: BORÉM, A.; GALVÃO, J. C. C.; PIMENTEL, M. A. (Eds.). Milho do plantio à colheita. 2. ed. Viçosa, MG: Editora UFV, 2017. cap. 6, p. 139-155.

GUIMARÃES, L. J. M. et al. Desenvolvimento de linhagens. In: DELIMA, R. O.; BOREM, A. (Eds.). Melhoramento de milho. Viçosa, MG: Editora UFV, 2018. cap. 6, p. 102-129.

HALLAUER, A. R.; CARENA, M. J.; MIRANDA FILHO, J. B. Quantitative genetics in Maize breeding. 3 ed. USA: Springer, 2010. 664 p.

HALLAUER, A. R.; CARENA, M. J. Maize Breeding. In: CARENA, J. M. (Ed.). Cereals. USA: Springer, 2009. cap. 1, p. 3-98.

KOLAWOLE, A. O. et al. Changes in heterosis of maize (Zea mays L.) varietal cross hybrids after four cycles of reciprocal recurrent selection. Cereal Research Communications, 47: 1-17, 2019.

KUZNETSOVA, A.; BROCKHOFF, P. B.; CHRISTENSEN, R. B. LmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82: 1-26, 2017.

MORÔ, G. V.; FRITSCHE-NETO, R. Importância e usos de milho no Brasil. In: BORÉM, A.; GALVÃO, J. C. C.; PIMENTEL, M. A. (Eds.). Milho: do plantio à colheita. 2. ed. Viçosa, MG: Editora UFV, 2017. cap. 1, p. 9-24.

OLIBONI, R. et al. Análise dialélica na avaliação do potencial de híbridos de milho para a geração de populações-base para obtenção de linhagens. Semina: Ciências Agrárias, 34: 7-18, 2013.

PEIXOTO, M. A. et al. Selection of maize hybrids: an approach with multi-trait, multi-environment, and ideotype-design. Crop Breeding and Applied Biotechnology, 21: 1-9, 2021.

RAPOSO, F. V.; RAMALHO, M. A. P.; RIBEIRO, P. H. Alterations in heterosis of maize populations derived from single-cross hybrids after reciprocal recurrent selection. Crop Breeding and Applied Biotechnology, 4: 74-80, 2004.

REIS, M. C. et al. Progresso genético com a seleção recorrente recíproca para híbridos interpopulacionais de milho. Pesquisa Agropecuária Brasileira, 44: 1667-1672, 2009.

REIS, M. C. et al. Reciprocal recurrent selection in maize enhances heterosis and ears yield. Euphytica, 191: 217-222, 2013.

ROCHA, J. R. A. S. C.; MACHADO, J. C.; CARNEIRO, P. C. S. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10: 52-60, 2018.

SENHORINHO, H. J. C. et al. Combining abilities and inbreeding depression in commercial maize hybrids. Semina: Ciências Agrárias, 36: 4133-4149, 2015.

SOUZA JÚNIOR, C. L. Seleção Recorrente. In: DELIMA, R. O; BOREM, A. (Eds.). Melhoramento de milho. Viçosa, MG: Editora UFV, 2018. cap. 4, p. 73-101.

SOUZA NETO, I. L. et al. Análise dialélica e depressão endogâmica de híbridos forrageiros de milho para características agronômicas e de qualidade bromatológica. Bragantia, 74: 42-49, 2015.

TOLENTINO, V. H. D. et al. Diallel analysis and inbreeding depression of commercial maize hybrids aiming the formation of base populations. Maydica, 62: 1-7, 2017.

TREVISAN, W. L. The route of dissemination of maize around the world & heterotic patterns utilized in maize breeding around the world. In: PAES, M. C. D.; PINHO, R. G. V.; MOREIRA, S. G. (Eds.). Soluções integradas para os Sistema de produção de milho e sorgo no Brasil. Sete Lagoas, MG: ABMS, 2018. cap. 17, p. 462-506.

VIANA, J. M. et al. Relative efficiency of the genotypic value and combining ability effects on reciprocal recurrent selection. Theoretical and Applied Genetics, 126: 889-899, 2013.

YAN, W. Analysis and handling of G × E in a practical breeding program. Crop Science, 56: 2106-2118, 2016.

Downloads

Published

26-02-2024

Issue

Section

Scientific Article