Calibration and evaluation of CSM-CROPGRO-soybean for soybean crop in the southwestern cerrado of Piauí
DOI:
https://doi.org/10.1590/1983-21252024v3711959rcKeywords:
Agricultural modeling. Growth analysis. Sowing time. Climate risk.Abstract
The study aimed to calibrate and evaluate the DSSAT CSM-CROPGRO-Soybean model to simulate soybean grain yields in the Cerrado of the Southwestern region of Piaui. To parameterize the model, data from the 2019-2020 crop season was used from an experiment installed in the Serra do Quilombo, in Bom Jesus-PI (9º16'20.3'' S, 44º44'56.9'' O, and altitude 620 m). The BRS 8980 IPRO (BRS 8980), BMX 84I86 (Domínio), BMX 81I81RSF IPRO (Extrema), and BMX 8579 IPRO (Bonus) cultivars were evaluated on three sowing dates (11/29/2019, 01/14/2020, and 01/30/2020). The evaluation was conducted using soybean yield data collected in value for cultivation and use (VCU) experiments conducted by Embrapa Meio-Norte at Celeiro farm, Serra do Quilombo, Bom Jesus, PI, during four harvests and involving 61 genotypes. The best statistical indexes showing the efficiency of the calibration process were observed for the BRS 8980 (first sowing season) and Bônus (third sowing season) cultivars, with R² and D indexes above 0.90. The total biomass production showed high agreement with the measured values, capturing the decrease in production due to the sowing date. The model captured the variability depending on the sowing dates and the yield for simulations of four other agricultural seasons, independent of the season in which the model was calibrated. It was concluded that the model satisfactorily simulated plant growth and soybean grain yield for the conditions of the Cerrado of the Southwestern region of Piaui.
Downloads
References
ANDRADE JÚNIOR, A. S. et al. Classificação climática e regionalização do semi-árido do Estado do Piauí sob cenários pluviométricos distintos. Revista Ciência Agronômica, 36: 143-151, 2005.
BARBIERI, J. D. et al. Simulação da produtividade e de épocas de semeadura para soja e milho em eventos de El niño Oscilação Sul no estado de Mato Grosso. Acta Iguazu, 9: 45-66, 2020.
BATTISTI, R.; BENDER, F. D.; SENTELHAS, P. C. Assessment of different gridded weather data for soybean yield simulations in Brazil. Theoretical and Applied Climatology, 35: 237-247, 2019.
BATTISTI, R.; SENTELHAS, P. C.; BOOTE, K. J. Inter-comparison of performance of soybean crop simulation modelsand their ensemble in southern Brazil. Field Crops Research, 200: 28-37, 2017.
BOOTE, K. J. et al. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy. 100: 99-109, 2018.
HOOGENBOOM, G. et al. Decision support system for agrotechnology transfer v3.5. In: HOOGENBOOM, G.; WILKENSP, W.; TSUJI, G. Y. 1999, University of Hawaii, Honolulu, Hawaii. DSSAT version 3, vol. 4, 1999. p. 1-36.
HOOGENBOOM, G. et al. The DSSAT crop modeling ecosystem. In: BOOTE, K. J. (Eds.) Advances in Crop Modeling for a Sustainable Agriculture. Cambridge: Burleigh Dodds Science Publishing, 2019a. v. 1, cap. 7, p. 173-216.
HOOGENBOOM, G. et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA, 2019b.
HOOGENBOOM, G. et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.8 (DSSAT.net). 2021. DSSAT Foundation, Gainesville, Florida, USA. Disponível em: DSSAT.net - Official Home of the DSSAT Cropping Systems Model. Acesso em: 23 ago. 2023.
JONES, J. W. et al. The DSSAT cropping system model. European Journal of Agronomy, 18: 235-265, 2003.
JONES, J. W. et al. Decision Support System for Agrotechnology Transfer Version 4.0. Volume 4. DSSAT v4.5: Crop Model Documentation. University of Hawaii, Honolulu, HI, 2010.
LI, Z. T. et al. Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135: 90-104, 2015.
NASA - National Aeronautics and Space Administration. The data was obtained from the POWER Project's. Geos 5.12.4 (FP-IT) 0. x 0.5 Degree Daily Averaged. Version on, accessed on 07/06/2023: PODER DA NASA | Previsão de Recursos Energéticos Mundiais.
PERONDI, D. et al. Crop season planning tool: Adjusting sowing decisions to reduce the risk of extreme weather events. Computers and Electronics in Agriculture, 156: 62-70, 2019.
PRAGANA, R. B. et al. Characterization of yellow latosols (oxisols) of serra do quilombo, in Piauí state savanna woodlands – Brazil. Revista Caatinga, 29: 832-840, 2016.
R CORE TEAM. R: A language and environment for statistical computing. 2022. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: https://www.r-project.org//>. Acesso em: 31 out. 2022.
REIS, L. et al. Influence of Climate Variability on Soybean Yield in MATOPIBA, Brazil. Atmosphere, 1130: 1-24, 2020.
RITCHIE, J. T. Soil water balance and plant water stress. In: TSUJI, G. Y.; HOOGENBOOM, G.; THORNTON, P. K. (Eds.). Understanding Options for Agricultural Production. Systems Approaches for Sustainable Agricultural Development. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998. v. 7, cap. 3, p. 41-54.
RICHETTI, J.; JOHANN, J. A.; OPAZO, M. A. U. Crop modeling with less data: the FAO model for Soybean yield estimation. Engenharia Agrícola, 41: 196-203, 2021.
SCIARRESI, C. et al. Evaluating short-season soybean management adaptations for cover crop rotations with a crop simulation model. Field Crops Research, 250: 1-16, 2020.
SILVA, E. H. F. M. et al. Performance of the CSM-CROPGRO-soybean in simulating soybean growth and development and the soil water balance for a tropical environment. Agricultural Water Management, 252: 378-3774, 2021.
SHIMAKURA, S. E. Interpretação do coeficiente de correlação. 2006. Disponível em: http://leg.ufpr.br/~silvia/CE003/node74.html. Acesso em: 16 ago. 2023.
SOUZA, J. M. H. et al. Análise de Sensibilidade dos Coeficientes Genéticos do Modelo Canegro/DSSAT. Anuário do Instituto de Geociências – UFRJ, 2: 47-52, 2017.
TALACUECE, M. A. D. et al. Modeling of Soybean under Present and Future Climates in Mozambique. Climate, 4:1-14, 2016.
VASCONCELLOS, M. C. et al. Estratégias de controle de pragas em soja e suas implicações na comunidade de artrópodes e na rentabilidade da cultura. Nativa, 11: 28-43, 2023.
XAVIER, A. C. et al. New improved Brazilian daily weather gridded data (1961–2020). International Journal of Climatology, 42: 8390–8404, 2022.
WIJEWARDANA, C. et al. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Science, 36: 241–255, 2018.
WILLMOTT, C. J. Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63:1309-1313, 1982.
YANG, J. M. et al. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127: 81–89, 2014.
YAN, W. et al. Simulating and predicting crop yield and soil fertility under climate change with fertilizer management in northeast China based on the Decision Support System for Agrotechnology Transfer Model. Sustainability, 12: 1-20, 2020.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).