Analysis of bioactive compounds, organic acids, and genetic parameters of ten amazonian robusta cultivars

Authors

DOI:

https://doi.org/10.1590/1983-21252024v3712017rc

Keywords:

Coffea canephora. Caffeine. Trigonelline. Chlorogenic acids. Plant genetics.

Abstract

Coffea canephora beans are used for various industrial purposes, among which the use as soluble coffees stands out for producing beverages in blends with Coffea arabica. Due to the increase in demand, EMBRAPA launched ten monoclonal C. canephora cultivars, named Amazonian Robustas, adapted to the growing conditions of the Brazilian Amazon. However, the chemical composition of the beans of these cultivars is still little known. The present study aimed to estimate genetic parameters for the evaluated characteristics and determine the levels of bioactive compounds and organic acids in ten C. canephora cultivars. The experiment was set in Manaus, Amazonas, consisting of plants from the cultivars BRS 1216, BRS 2299, BRS 2314, BRS 2336, BRS 2357, BRS 3137, BRS 3193, BRS3210, BRS 3213, and BRS 3220. The cultivars were characterized according to the profile of bioactive compounds and organic acids. Analysis of variance, mean test, and genetic parameters (genetic, environmental, and phenotypic variance and heritability) were conducted. The heritability of characters was considered from intermediate 63.76% (trigonelline) to high 88.44% (caffeine). Of the compounds studied, trigonelline contents ranged from 0.54 to 0.78 g.100g-1, chlorogenic acids from 3.77 to 5.31 g.100g-1, caffeine from 2.31 to 4.13 g.100g-1, and citric acid from 0.76 to 1.28 g.100g-1. It was observed that there is genetic variability among the cultivars for the compounds studied, and the cultivars can be used in breeding programs for the development of new cultivars.

Downloads

Download data is not yet available.

References

AGUIAR, A. T. E. et al. Diversidade química de cafeeiros na espécie Coffea canephora. Bragantia, 64: 577-582, 2005.

CONAB – Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de café: safra 2017. Brasília, DF: CONAB, 2017. 82 p.

CRUZ, C. D.; CARNEIRO, P. C. S.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: UFV, 2014. 668 p.

DUBBERSTEIN, D. et al. Biometric traits as a tool for the identification and breeding of Coffea canephora genotypes. Genetics and Molecular Research, 19: gmr18541, 2020.

ESPINDULA, M. C. et al. Novas cultivares de cafeeiros Coffea canephora para a Amazônia Ocidental Brasileira: Principais características. Porto Velho, RO: Embrapa Rondônia, 2019. 36 p.

FALCONER, D. S. Introdução à genética quantitativa. Viçosa, MG: UFV, 1987. 279 p.

FALUBA, J. S. et al. Genetic potential of maize population UFV 7 for breeding in Minas Gerais. Ciência Rural, 40: 1250-1256, 2010.

FARAH, A.; LIMA, A. G. Organic acids. In: FARAH, A. (Eds.) Coffee: Production, quality and chemistry. Cambridge: The Royal Society of Chemistry, 2019. cap. 22 p. 517-542.

FARAH, A. et al. Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98: 373–380, 2006.

FASSIO, L. O. et al. Sensory Description of Cultivars (Coffea Arabica L.) Resistant to Rust and Its Correlation with Caffeine, Trigonelline, and Chlorogenic Acid Compounds. Beverages, 2: 1-12, 2016.

FERRÃO, R. G. et al. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira, 43: 61-69, 2008.

FROST-MEYER, N. J.; LOGOMARSINO, J. V. Impact of coffee components on inflammatory markers : A review. Journal of Functional Foods, 4: 819-830, 2012.

GARAMBONE, E.; ROSA, G. Possíveis benefícios do ácido clorogênico à saúde. Alimentos e Nutrição Araraquara, 18: 229-235, 2008.

GOMES, W. S.; PARTELLI, F. L. Coffea canephora no Brasil e seus aspectos produtivos. In: PARTELLI, F. L.; PEREIRA, L. L. (Eds.). Café conilon: Conilon e Robusta no Brasil e no Mundo. Alegre, ES: CAUFES, 2021. cap. 5, p. 65-73.

HEČIMOVIĆ, I. et al. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129: 991-1000, 2011.

JHAM, G. N. et al. Comparison of GC and HPLC for the quantification of organic acids in coffee. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 13: 99-104, 2002.

LINGLE, T. R. The coffee cupper's handbook: a systematic guide to the sensory evaluation of coffee's flavor. 4 ed. Long Beach, California: Specialty Coffee Association of America, 2011. 66 p.

KY, C. L. et al. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chemistry, 75: 223-230, 2001.

KOSHIRO, M. C. et al. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. European Chemical Bulletin, 4: 378-383, 2015.

MACRAE, R. Nitrogenous components. In: CLARKE, R. J.; MACRAE, R. (Eds.). Coffee chemistry. Dordrecht: Springer Netherlands, 1985. v. 1, p. 115-152.

MARCOLAN, A. L. et al. Cultivo dos cafeeiros conilon e robusta para Rondônia. Porto Velho, RO: Embrapa Rondônia/Emater - RO, 2009. 67 p.

MONTEIRO, M. C.; TRUGO, L. C. Determinação de Compostos Bioativos em amostras comerciais de café torrado. Química Nova, 28: 637-641, 2005.

MONTAGNON, C. et al. Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breeding, 117: 576-578, 1998.

PEREIRA, L. L. et al. Improvement of the Quality of Brazilian Conilon through Wet Processing: A Sensorial Perspective. Agricultural Sciences, 10: 395-411, 2019.

RIBEIRO, B. B. et al. Avaliação química e sensorial de blends de Coffea canephora Pierre E Coffea Arabica L. Coffee Science, 9: 178-186, 2014.

RODRIGUES, L. et al. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. Journal of Food Composition and Analysis, 20: 440-448, 2007.

ROGERS, S. et al. Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Science, 149: 115-123, 1999.

SCHENKER, S.; ROTHGEB, T. The roast-Creating the Beans' signature. In: FOLMER, B. The craft and science of coffee. Cambridge, MA: Academic Press, 2017. cap. 11 p. 245-271.

SOUZA, R. M. N. D. et al. Teores de compostos bioativos em cafés torrados e moídos comerciais. Química Nova, 33: 885-890, 2010.

VARIYAR, P. S. et al. Flavoring components of raw monsooned arabica coffee and their changes during radiation processing. Journal of Agricultural and Food Chemistry, 51: 7945-7950, 2003.

VIENCZ, T. et al. Caffeine, trigonelline, chlorogenic acids, melanoidins, and diterpenes contents of Coffea canephora coffees produced in the Amazon. Journal of Food Composition and Analysis, 117: 105140, 2023.

VITORINO, M. D. et al. Metodologias de obtenção de extrato de café visando a dosagem de compostos não voláteis. Revista Brasileira de Armazenamento, 26: 17-24, 2001.

ZAIN, M. Z. M.; SHORI, A. B.; BABA, A. S. Composition and Health Properties of Coffee Bean. European Journal of Clinical and Biomedical Sciences, 3: 97-100, 2017.

Downloads

Published

26-02-2024

Issue

Section

Scientific Article