Impact of silicon application on downy mildew severity in melon plants during the rainy season

Authors

  • João Pedro Ferreira Barbosa Graduate Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0001-9689-435X
  • Júlio Renovato dos Santos Graduate Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0002-8924-5017
  • Paulo Roberto Gagliardi Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0002-9394-8604
  • Airon José da Silva Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0002-3895-8041
  • Thiago Herbert Santos Oliveira Department of Agricultural Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0002-1066-1553
  • Luiz Fernando Ganassali de Oliveira Júnior Graduate Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil https://orcid.org/0000-0002-1589-0742

DOI:

https://doi.org/10.1590/1983-21252024v3712077rc

Keywords:

Cucumis melo L. Pseudoperonospora cubensis. Biotic stress. Phytosanitary. Potassium silicate.

Abstract

Downy mildew is one of the main foliar diseases affecting melon plants during the rainy season in the Northeast region of Brazil. Silicon (Si) application has emerged as an alternative method for pathogen control, forming physical barriers and activating defense mechanisms in plants. The objective of this study was to reduce the severity of downy mildew in melon plants during the rainy season through foliar application of Si. The treatments consisted of five rates (0, 0.25, 0.5, 1, and 2 L ha-1) of potassium silicate (12% Si and 15% potassium) applied from May to July 2022, with four replications. Disease severity was assessed using rating scales, chlorophyll contents, and transient chlorophyll a fluorescence (OJIP). The rate of 2 L ha-1 resulted in the best results by delaying pathogen development in leaves with disease incidence. Disease severity decreased to 68.27% and chlorophyll a, b, and total increased by 8.21%, 13.86%, and 9.72%, respectively. Si application resulted in beneficial changes in the following OJIP test parameters: ABS/RC, TR0/RC, ET0/RC, ABS/CS0, and TR0/CS0. During periods of high rainfall intensity and mild temperatures, Si application to melon plants reduces downy mildew severity and protects chlorophylls, enhancing the absorption flux (ABS) and electron storage (TR0) and transport (ET0).

Downloads

Download data is not yet available.

References

AHAMMED, G. J.; YANG, Y. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry, 165: 200-206, 2021.

ALBUQUERQUE, L. B. et al. Caracterização morfológica de fontes de resistência de meloeiro a Pseudoperonospora cubensis. Revista Caatinga, 28: 100-107, 2015.

ADHIKARI, B. et al. Plant disease control by non-thermal atmospheric-pressure plasma. Frontiers in Plant Science, 11: 1-15, 2020.

ALLEN, R. G. et al. Crop evapotranspiration: gui-delines for computing crop water requirements. Rome: FAO, 1998. 310 p. (Irrigation and Drainage Paper, 56).

BEREZOVSKA, D. et al. Effect of defoliation on the defense reactions of silver birch (Betula pendula) infected with Phytophthora plurivora. Forests, 12: 1-19, 2021.

CÂMARA, M. J. T. et al. Produção e qualidade de melão amarelo influenciado por coberturas do solo e lâminas de irrigação no período chuvoso. Ciência Rural, 37: 58-63, 2007.

CARDOSO, J. E.; SANTOS, A. A.; VIDAL, J. C. Efeito do míldio na concentração de sólidos solúveis totais em frutos do meloeiro. Fitopatologia Brasileira, 27: 378-383, 2002.

CHAKRABORTY, S.; CHATTOPADHYAY, A.; MANDAL, A. K. Screening of cucumber genotypes against downy mildew disease and its relationship with biochemical parameters. Indian Phytopathology, 75: 673-680, 2022.

ELSHAHAWY, I. E.; OSMAN, S. A.; ABD-EL-KAREEM, F. Protective effects of silicon and silicate salts against white rot disease of onion and garlic, caused by Stromatinia cepivora. Journal of Plant Pathology, 103: 27-43, 2021.

FAN, J. et al. Effects of exogenous silicon on growth and photosynthesis of melon seedlings under autotoxicity stress. Fujian Journal of Agricultural Sciences, 34: 638-645, 2019.

FERREIRA, D. F. SISVAR: a computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37: 529-535, 2019.

IBGE - Instituto Brasileiro de Geografia e Estatística. Produção de Melão no Brasil. 2022. Disponível em: <https://www.ibge.gov.br/explica/producao-agropecuaria/melao/br>. Acesso em: 14 mar. 2024.

KATANIĆ, Z. et al. Photosynthetic efficiency in flag leaves and ears of winter wheat during Fusarium head blight infection. Agronomy, 11: 2415, 2021.

KIM, S. G. et al. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92: 1095-1103, 2002.

KUMAR, A. et al. Effect of nutrient-and moisture-management practices on crop productivity, water-use efficiency and energy dynamics in rainfed maize (Zea mays) + soybean (Glycine max) intercropping system. Indian Journal of Agronomy, 60: 152-156, 2015.

KOVAČEVIĆ, J. et al. Photosynthetic efficiency parameters as indicators of agronomic traits of winter wheat cultivars in different soil water conditions. Genetika, 49: 891-910, 2017.

MOREIRA, L. S. J. et al. Agronomic performance and fruit quality of yellow melon fertilized with doses of nitrogen and potassium. Revista Caatinga, 35: 320-330, 2022.

MICHEREFF, S. J. et al. Diagrammatic scale to assess downy mildew severity in melon. Horticultura Brasileira, 27: 76-79, 2009.

MOUSTAKAS, M. Plant photochemistry, reactive oxygen species, and photoprotection. Photochem, 2: 5-8, 2022.

OLIVEIRA, T. B.; AUCIQUE-PÉREZ, C. E.; RODRIGUES, F. Á. Foliar application of silicon decreases wheat blast symptoms without impairing photosynthesis. Bragantia, 78: 423-431, 2019.

PÉREZ-BUENO, M. L.; PINEDA, M.; BARÓN, M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science, 10: 477268, 2019.

POZZA, E. A.; POZZA, A. A. A.; BOTELHO, D. M. S. Silicon in plant disease control. Revista Ceres, 62: 323-331, 2015.

RAMEZANI, M. et al. The role of potassium phosphite in chlorophyll fluorescence and photosynthetic parameters of downy mildew-challenged cucumber Cucumis sativus plants. Archives of Phytopathology and Plant Protection, 50: 927-940, 2017.

RHOUMA, A. et al. Downy mildew of cucurbits caused by Pseudoperonospora cubensis. Disease Profile and Management. International Journal of Plant Pathology and Microbiology, 2: 8-15, 2022.

SAKR, N. The role of silicon (Si) in increasing plant resistance against fungal diseases. Hellenic Plant Protection Journal, 9: 1-15, 2016.

SOBRAL, L. F. et al. Recomendação para o uso de corretivos e fertilizantes no estado de Sergipe. 1. ed. Aracaju, SE: Embrapa Tabuleiros Costeiros, 2007. 251 p.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa, 2018. 531 p.

SANTOS, V. P. et al. Fertirrigação da bananeira cv. Prata-Anã com N e K em um rgissolo vermelho-amarelo. Revista Brasileira de Fruticultura, 31: 567-573, 2009.

SAVORY, E. A. et al. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology, 12: 217-226, 2011.

SOURI, Z. et al. Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40: 906-925, 2021.

STIRBET, A. et al. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica, 56: 86-104, 2018.

Downloads

Published

21-03-2024

Issue

Section

Scientific Article