Combined effect of cytokinins on the in vitro propagation of three strawberry cultivars

Authors

DOI:

https://doi.org/10.1590/1983-21252024v3712180rc

Keywords:

Fragaria. Plant growth regulator. Micropropagation. SPAD index.

Abstract

In the in vitro propagation of strawberry plants, techniques have been applied to obtain disease-free plants with high multiplication rates. To improve the efficacy of micropropagation protocols, it is necessary to determine the effect of growth regulators, mainly cytokinins; however, there is no information regarding the combined use of trans zeatin (Zt) and other cytokinins for shoot induction. The objective of this work was to evaluate the effect of Zt combined with 6-benzylaminopurine (BAP), 6-furfurylaminopurine (KIN) or 2-isopentenyladenine (2iP) on the in vitro propagation of three strawberry cultivars. Combinations of cytokinins, Zt and BAP, Zt and KIN, and Zt and 2iP were proposed to evaluate shoot induction. For the acclimatization of the seedlings, two types of substrates were used (Pro-Mix, Pro-Mix plus humus 2:1). The use of Zt and KIN increased the average number of shoots per explant, and the greatest number of leaves and roots was obtained when Zt and 2iP or Zt and BAP were used. The Pro-Mix and Pro-Mix plus humus substrates did not significantly affect the number of leaves or roots, or the SPAD. These results indicate that the use of the combination of Zt and KIN allowed us to obtain the greatest number of shoots per explant that did not produce calli and promoted the development of the root system; likewise, the Pro-Mix or Pro-Mix plus humus substrate were adequate for acclimatization, allowing the growth and development of strawberry plants.

Downloads

Download data is not yet available.

References

AHMADIZADEH, M.; EBRAHIMI, R.; EBRAHIMI, F. Effect of different substrates on herbaceous pigments and chlorophyll amount of strawberry in hydroponic cultivation system. American-Eurasian Journal of Agricultural & Environmental Sciences, 12: 154-158, 2012.

BAUERLE, W. et al. Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae, 101: 169-178, 2004.

BHATT, I.D.; DHAR, U. Combined effect of cytokinins on multiple shoot production from cotyledonary node explants of Bauhinia vahlii. Plant Cell, Tissue and Organ Culture, 62: 79-83, 2000.

ARA, T. et al. Effects of different hormones on in vitro regeneration of strawberry (Fragaria x ananassa Duch.). International Journal of Biosciences, 2: 86-92, 2012.

ASHRAF, M. F. et al. Effect of cytokinin types, concentrations and their interactions on in vitro shoot regeneration of Chlorophytum borivilianum Sant. & Fernandez. Electronic Journal of Biotechnology, 17: 275-279 2014.

CASTILLO, A. Propagación de plantas por cultivo: una biotecnología que nos acompaña hace mucho tiempo. INIA, Uruguay, 2004. 8 p.

COELHO, F. S. et al. Dose de nitrogênio associada à produtividade de batata e índices do estado de nitrogênio na folha. Revista Brasileira de Ciência do Solo, 34: 1175-1183, 2010.

CÜCE, M.; BEKTAŞ, E.; SӦKMEN, A. Micropropagation of Vaccinium arctostaphylos L. via lateral-bud culture. Turkish Journal of Agriculture and Forestry, 37: 40-44, 2013.

DEWIR, Y. et al. Micropropagation of Cattleya: Improved in vitro rooting and acclimatization. Horticulture Environment and Biotechnology, 56, 89-93, 2015.

DHUKATE, M. et al. Protocol for micropropagation of strawberry (Fragaria × ananassa) cv. ‘Sweet Charlie’ and ‘Winter Dawn’. Environmental and Experimental Biology, 19: 1-6, 2021.

DEBNATH, C. S. Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. The Journal of Horticultural Science and Biotechnology, 81: 349-354, 2006.

FÉLIX-HERNÁNDEZ, R.; LÓPEZ-LÓPEZ, Y.; ALVARADO-RODRÍGUEZ, M. Micropropagación de tres variedades de Fragaria x ananassa (“Portola”, “Albión” y “Camino Real”). Biotecnología y Sustentabilidad, 2: 131-136, 2017.

GHASEMI, Y. et al. Adventitious shoot and root regeneration of wild strawberry (F. viridis Duch.) by means of tissue culture medium optimization. Biological Forum, 7: 436-444, 2015.

GÓMEZ, H. R. Sistemas de producción de fresa de altas densidades. 2011, 81 p. Disertación (Maestría en Ciencias: Área Edafología), Colegio de Postgraduados, Montecillo, México, 2011.

HADDADI, F. et al. Micropropagation of strawberry cv. camarosa: Prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6-benzylamino-purine. HortScience, 45: 453-456, 2010.

HARUGADE, S.; TABE, R. H.; CHAPHALKAR, S. Micropropagation of Strawberry (Fragaria x ananassa Duch.). Internacional Journal of Current Microbiology and Applied Sciences, 3: 344-347, 2014.

IRSHAD, M. et al. Fruits of micropropagated strawberry (Fragaria x ananassa) plants exhibited higher antioxidant metabolites as compared to in vivo grown plants. Pakistan Journal of Botany, 55: 727-737, 2023.

JHAJHRA, S. et al. In-vitro Propagation of Strawberry (Fragaria × ananassa Duch.). International Journal of Current Microbiology and Applied Sciences, 7: 3030-3035, 2018.

KARELE, I. Chlorophyll content distribution in leaves, stems, and ears in winter wheat. Plant Nutrition, 92: 720-721, 2001.

KARHU, S.; HAKALA, K. Micropropagated strawberries on the field. Acta Horticulturae, 567:321-324, 2002.

KIKAS, A.; LIBEK, A.; VASAR, V. Influence of micropropagation on the production of strawberry runner plants, yield and quality. Acta Horticulturae, 708: 241-244, 2006.

MIXQUITITLA, G. et al. Crecimiento, rendimiento y calidad de fresa por efecto del régimen nutrimental. Revista Mexicana de Ciencias Agrícolas, 11: 1337-1348, 2020.

MOHAMED, M. E. et al. Effect of gibberellic acid on strawberry (Fragaria x ananassa Duch.) micropropagation during multiplication stage. Zagazig Journal of Agricultural Research, 43: 755-761, 2016.

NERI, J. et al. An Optimized Protocol for Micropropagation and Acclimatization of Strawberry (Fragaria × ananassa Duch.) Variety ‘Aromas.’ Agronomy, 12: 968, 2022.

NIKOLIĆ, R. et al. Effect of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. Journal of Plant Growth Regulation, 25: 187-194, 2006.

QUIROZ, K. A. et al. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research, 50: 20, 2017.

RIBEIRO, A. et al. Índice SPAD en el crecimiento y desarrollo de plantas de Lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. IDESIA, 33: 97-106, 2015.

SAHA, S.; MORI, H.; HATTORI, K. Synergistic effect of kinetin and benzyl adenine plays a vital role in high frequency regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria) in relation to ethylene production. Breeding Science, 57: 197-202. 2007.

SEHRAWAT, S. K. et al. Production of strawberry plant by in vitro propagation. Research on Crops, 17: 545-549, 2016.

SILVA-NAVAS, J. et al. Role of cis-zeatin in root responses to phosphate starvation. New Phytologist, 224: 242-257, 2019.

TORRICO, A. K. et al. Yield losses of asymptomatic strawberry plants infected with Strawberry mild yellow edge virus. European Journal of Plant Pathology, 150: 983-990, 2018.

YOSHIDA, S.; MANDEL, T.; KUHLEMEIER, C. Stem cell activation by light guides plant organogenesis. Genes & Development, 25: 1439-1450, 2011.

WU, W. et al. The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8: 118, 2021.

Downloads

Published

09-05-2024

Issue

Section

Scientific Article