Water restriction as a strategy for growing Talinum fruticosum (L.) Juss. (Talinaceae)

Authors

  • Robson de Jesus Santos Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil https://orcid.org/0000-0003-4917-6683
  • Marilza Neves do Nascimento Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil https://orcid.org/0000-0003-3344-9106
  • Geany Peruch Camilloto Department of Technology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil. https://orcid.org/0000-0002-3924-7823
  • Uasley Caldas de Oliveira Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil https://orcid.org/0000-0001-6551-7746
  • Flávio Soares dos Santos Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil https://orcid.org/0000-0003-2882-1479

DOI:

https://doi.org/10.1590/1983-21252024v3712183rc

Keywords:

Biomolecules. Abiotic stress. Leaf gas exchange.

Abstract

Talinum fruticosum is a species confirmed to occur in the semi-arid region, considered an unconventional food plant with a high protein content and tolerant to temporary periods of water restriction. This study aimed to evaluate water deficit as a strategy for growing Talinum fruticosum, covering physiological and biochemical aspects. The experimental design adopted was entirely randomized, using six treatments and eight replications. The treatments were defined as water availability (WA) 0 (no water replenishment), 20, 40, 60, 80, and 100%, conducted in a greenhouse, with water replenishment every 7 days. After 21 days, the centesimal composition, water relations, gas exchange, and biochemical aspects were evaluated. The energy value of the dry biomass of T. fruticosum leaves was directly influenced by the water content in the soil, and the water deficit led to an increase in protein. Water restriction compromised the species' water status and performance, mainly limiting gas exchange by reducing the water content in the soil, compromising CO2 gain. It also led to increased biomolecules, with the highest contents seen in the treatments without water replacement (0%) and for 20% WA. Therefore, reducing the WA to 40% could be a strategy adopted to increase the protein content in the leaves of T. fruticosum, promoting an increase in the centesimal composition of proteins, a reduction in gas exchange, and an increase in the content of biomolecules.

Downloads

Download data is not yet available.

References

ALVALÁ, R. C. S. et al. Drought monitoring in the brazilian semiarid region. Annals of the Brazilian Academy of Sciences, 91: 1-15, 2019.

ARAÚJO, B. O. N. et al. Desempenho bioquímico de plântulas de feijão sob restrição hídrica no início do desenvolvimento. Revista de la Facultad de Agronomía, 20: 1-9, 2021.

BATES, L.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207, 1973.

BIOLTIF, Y. E.; EDWARD, N. B. Review on the medicinal potentials of waterleaf (Talinum triangulare). Mediterranean Journal of Basic and Applied Sciences, 4: 1-7. 2020.

BLIGH, E. G.; DYER, W. J. A rapid method of total lipid extraction and purification. Canadian Journal Biochemistry Physiological, 37: 911-917, 1959.

BRASIL. RESOLUÇÃO CONDEL/SUDENE Nº 150. Ministério do Desenvolvimento Regional/Superintendência do Desenvolvimento do Nordeste/Conselho Deliberativo. 2021. Disponível em: <https://www.in.gov.br/web/dou/-/resolucao-condel/sudene-n-150-de-13-de-dezembro-de-2021-370970623> Acesso em: 5 mai. 2023.

EDEMA-EYENA, U. et al. Effect of boiling on the pH, glucose and soluble proteins contents of waterleaf (Talinum fruticosum), bitter leaf (Vernonia amygdalina) and fluted pumpkin (Telfairia occidentalis). Nigerian Journal of Science and Environmen, 21: 369-380, 2023.

GONZÁLEZ-CHAVIRA, M. M. et al. Controlled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Scientia Horticulturae, 234: 354-360, 2018.

GRIFFITHS, H.; MALES, J. Succulent plants. Current Biology, 27: 890-896, 2017.

GUERERE, I. et al. Recycling of CO2 during induction of CAM by drought in Talinum paniculatum (Portulacaceae). Physiologia Plantarum, 98: 471-476, 1996.

HERRERA A.; DELGADO J.; PARAGUATEY I. Occurrence of crassulacean acid metabolism in Talinum triangulare (Portulacaceae). Journal of Experimental Botany, 42: 493-499, 1991.

HERRERA, A. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Annals of Botany, 103: 645653, 2009.

HERRERA, A.; BALLESTRINI, C.; MONTES, E. What is the potential for dark CO2 fixation in the facultative crassulacean acid metabolism species Talinum triangulare. Journal of Plant Physiology, 174: 55-61, 2015.

HILDEBRANDT, T. M. et al. Amino acid catabolism in plants. Molecular Plant, 8: 1563-1579, 2015.

HUANG, T.; JANDER, G. Abscisic acid-regulated protein degradation causes osmotic stressinduced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 246: 737-747, 2017.

IKEWUCHI, C. C.; IKEWUCHI, J. C.; IFEANACHO, M. O. Bioactve phytochemicals in an aqueous extract of the leaves of Talinum triangulare. Food Science & Nutrition, 5: 696-701, 2016.

KINUPP, V. F.; LORENZI, H. Plantas alimentícias não convencionais (PANC) no Brasil: guia de identificação, aspectos nutricionais e receitas ilustradas. 1. ed. São Paulo, SP: Instituto Plantarum de Estudos da Flora, 2014. 768 p.

LEITE, R. S. et al. Chemical priming agents controlling drought stress in Physalis angulata plants. Scientia Horticulturae, 275: 1-9, 2021.

LEITE, R. S. et al. Physiological responses of Physalis angulata plants to water déficit. Journal of Agricultural Science, 10: 287-297, 2018.

MA, Q.-J. et al. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology, 174: 2348-2362, 2017.

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry, 31: 426-428, 1959.

MUNNS, R.; MILLAR, A. H. Seven plant capacities to adapt to abiotic stress. Journal of Experimental Botany, 74: 4308-4323, 2023.

PIETERS, A. J.; TEZARA, W.; HERRERA, A. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit. Annals of Botany, 92: 393-399, 2003.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical. Computing, (2021). Disponível em: <https://www.R-project.org/>. Acesso em: 10 jan. 2023.

SILVA, J. A. et al. Gas exchanges and growth of soybean cultivars submitted to water deficiency. Pesquisa Agropecuária Tropical, 50: 1-9, 2020.

SILVA, L. D. et al. Plasticity of photosynthetic metabolism in Jatropha curcas genotypes under water déficit. Genetics and Molecular Research, 18: 1-17, 2019.

SOUZA, P. J. O. P. et al. Trocas gasosas do feijao-caupi cultivado no nordeste paraense em resposta à deficiência hídrica forçada durante a fase reprodutiva. Revista Brasileira de Meteorologia, 35: 13-22, 2020.

YANG, X. et al. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 207: 491-504, 2015.

YEMM, E. W.; A. J. WILLIS. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57: 508-514, 1954.

YEMM, E. W.; COCKING, E. C. The determination of amino-acids with ninhydrin. Analyst, 80: 209-213, 1955.

Downloads

Published

06-05-2024

Issue

Section

Scientific Article