Effects of Fe and Zn on growth, biofortification and quality of lettuce grown in hydroponics

Authors

  • Vitor Borges da Silva Department of Plant Production, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Jaboticabal, SP, Brazil https://orcid.org/0000-0002-7782-1937
  • Laura Matos Ribera Department of Plant Production, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Jaboticabal, SP, Brazil https://orcid.org/0000-0003-1570-7714
  • Maria José Yañez Medelo Department of Plant Production, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Jaboticabal, SP, Brazil https://orcid.org/0000-0001-8564-5358
  • Hilário Júnior de Almeida Department of Plant Production, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Jaboticabal, SP, Brazil https://orcid.org/0000-0002-7186-846X
  • Arthur Bernardes Cecilio Filho Department of Plant Production, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Jaboticabal, SP, Brazil https://orcid.org/0000-0002-6706-5496

DOI:

https://doi.org/10.1590/1983-21252024v3712187rc

Keywords:

Biofortified food. Soilless cultivation. Nutrient deficiency. Hidden hunger. Lactuca sativa L.

Abstract

Iron (Fe) and zinc (Zn) are essential elements for human health and their deficiencies cause reduced work capacity, physiological and immune system disorders, anemia and even death, being considered primary global public health problems. Agronomic biofortification aims to increase the concentration of these nutrients in the edible part of the plant and, consequently, increase human intake of these nutrients. The aim of this study was to evaluate the effects of Fe and Zn concentrations on the growth, biofortification and quality of lettuce grown in hydroponics. Six treatments corresponding to the combinations of Zn (0.06 and 0.24 mg L-1) and Fe (2, 4 and 8 mg L-1) concentrations were evaluated. Increase of Zn in the nutrient solution positively influenced only leaf Zn contents at 18 days after transplanting the seedlings and ascorbic acid at harvest. On the other hand, the increase in Fe concentration positively influenced the contents of photosynthetic pigments, ascorbic acid and Fe; however, it negatively affected the leaf Zn content, leaf area and leaf dry mass of lettuce. Greater biofortification of lettuce for Fe was observed with the Fe concentration of 8 mg L-1 in the solution.

Downloads

Download data is not yet available.

References

ALMEIDA, H. J. et al. Soil Type and Zinc Doses in Agronomic Biofortification of Lettuce Genotypes. Agronomy, 10: 2-10, 2020.

ALLOWAY, B. J. Zinc in Soils and Crop Nutrition. 1. ed. Bruxelas: International Zinc Association, 2008. 139 p.

BARBOSA, J. C.; MALDONADO JÚNIOR, W. Experimentação Agronômica e Agroestat - Sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, SP: Gráfica Multipress Ltda, 2015. 396 p.

BRIAT, J. F.; DUBOS, C.; GAYMARD, F. Iron nutritio, biomass production, and plant product quality. Trends in Plant Science, 20: 33-39, 2015.

BUTURI, C. V. et al. Iron Biofortification of Greenhouse Soiless Lettuce: An Effective Agronomic Tool to Improve the Dietary Mineral Intake. Agronomy, 8: 1793, 2022.

CAMEJO, D. et al. Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment and Biotechnology, 61: 69-82, 2020.

CECILIO FILHO, A. B. et al. Common Chicory Performance as Influencied by Iron Concentration in the Nutrient Solution. Journal of Plant Nutrition, 38: 1489-1494, 2015.

DI GIOIA, F. et al. Zinc and Iron Agronomic Biofortification of Brassicaceae Microgreens. Agronomy, 9: 1-20, 2019.

FURLANI, P. R. et al. Cultivo hidropônico de plantas. 1. ed. Campinas, SP: Instituto Agronômico, 1999. 30 p.

GIORDANO, M. et al. Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soiless Cultivation Impacts Crop Performance and Modulates Mineral and Bioactive Composition. Agronomy, 9: 290, 2019.

GÖDECKE, T.; STEIN, A. J.; QAIM, M. The global burden of chronic and hidden hunger: Trend and determinants. Global Food Security, 18: 21-29, 2018.

GRACIANO, P. D. et al. Agronomic biofortication with zinc in curly lettuce cultivars. Revista Brasileira de Ciências Agrárias, 15: 1-9, 2020.

LAFARGA, T. et al. Bioaccessibility of polyphenols and antioxidant capacity of fresh or minimally processed modern or traditional lettuce (Lactuca sativa L.) varieties. Journal of Food Science and Technology, 57: 754 -763, 2020.

LICHTENTALER, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382, 1987.

LOUREIRO, M. P. et al. Biofortificação de alimentos: problema ou solução? Segurança Alimentar e Nutricional, 25: 66-84, 2018.

KABATA-PENDIAS, A. Trace elements in soils and plants. CRC Press: Boca Raton, 2010. 578 p.

MAJUMDER, S.; DATTA, K.; DATTA, S. K. Rice biofortification: High iron, zinc, and Vitamin-A to fight against “hidden hunger”. Agronomy, 9: 1-22, 2019.

MERCÊS, J. K. R.; MEDELO, M. J. Y.; CECÍLIO FILHO, A. B. Biofortification and Quality of Collard Greens as a Function of Iron Concentration in Nutrient Solution. Agronomy, 12: 2493, 2022.

MIYAZAWA, M. et al. Análises químicas de tecido vegetal. In: SILVA, F. C. (Ed.) Manual de análises químicas de solos, plantas e fertilizantes. Brasilia, DF: Embrapa, 2009. v. 2, cap. 2, p. 107-184.

OLIVEIRA, N. T. et al. Iron counteracts zinc-induced toxicity in soybeans. Plant Physiology and Biochemistry, 194: 335-344, 2023.

PRZYBYSZ, A. et al. Vegetable sprouts enriched with iron: Effects on yield, ROS generation and antioxidative system. Scientia Horticulturae, 2013: 110-117, 2016.

ROUPHAEL, Y.; KYRIACOU, M. C. Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soiless Cultivation. Frontiers in Plant Science, 9: 1254, 2018.

STROHECKER, R. L.; HENNING, H. M. Analisis de Vitaminas: Metodos Comprobados. Paz Montalvo, Madrid, 1967. 428 p.

TEUCHER, B.; OLIVARES, M.; CORI, H. Enhancers of iron absorption: ascorbic acid and other organic acids. International Journal for Vitamin Nutrition Research, 74: 403-419, 2004.

TRANI, P. E. et al. Composição química e diagnose foliar In: TRANI, P. E. et al. (Eds.) Hortaliças: Recomendações de calagem e adubação para o estado de São Paulo. Campinas, SP: CATI, 2018. v. 1, p. 8-13.

TEWARI, R. K.; KUMAR, P.; SHARMA, P. N. Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 171: 286-294, 2008.

WIESNER-REINHOLD, M. et al.Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Frontiers in Plant Science, 8: 1365, 2017.

WISHART, K. Increased Micronutrient Requirements during Physiologically Demanding Situations: Review of the Current Evidence. Vitamins & Minerals, 6: 1000166, 2017.

YOUNAS, N. et al. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecologica Sinica, 43: 419-425, 2023.

ZAHRA, N. et al. Fe toxicity in plants: Impacts and remediation. Physiologia Plantarum, 173: 201-222, 2021.

Downloads

Published

21-05-2024

Issue

Section

Scientific Article