Growth and nutrient accumulation in elephant grass crop

Authors

  • Éric George Morais Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-5936-7972
  • Fábio Henrique Tavares de Oliveira Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-8581-8482
  • Gualter Guenther Costa da Silva Agricultural Sciences Unit, Universidade Federal do Rio Grande do Norte, Macaíba, RN, Brazil https://orcid.org/0000-0002-4729-6449
  • Márcio Gleybson da Silva Bezerra Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-9866-6617
  • Francisco Vanies da Silva Sá Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-6585-8161
  • Leilson Costa Grangeiro Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0002-4613-3605
  • Giovana Soares Danino Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0003-0103-7342
  • Romualdo Medeiros Cortez Costa Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-7789-2906

DOI:

https://doi.org/10.1590/1983-21252024v3712385rc

Keywords:

Pennisetum purpureum. Fertilization. Macronutrients. Micronutrients.

Abstract

Elephant grass fertilization is performed more efficiently by analyzing growth curves and nutrient accumulation. This study evaluated elephant grass's growth, dry matter production, and nutrient accumulation. A sampling design was used, with plant collections over time. Elephant grass was cultivated in four plots of 27 m2 during two cultivation cycles. Destructive sampling of four plants was carried out per collection to evaluate dry matter production and nutrient accumulations. In the first cycle, plants were collected at 21, 35, 49, 63, 77, 91, 105 and 119 days after planting. After the last collection of the first cycle, a standardization cut was made, eliminating the remaining plants in the experimental plots. The second cycle of collections was carried out at 21, 35, 49, 63, 77, 91, and 105 days after the uniformity cut. In all collections, the number of tillers per linear meter was counted, and the height of the plants was evaluated. The data were subjected to nonlinear regression analysis. The accumulation of nutrients by elephant grass accompanied the production of dry matter. The highest rates of dry matter production occurred around 70 days. The greatest height growth occurred from 18 to 102 days in the 1st cycle and 8 to 61 days in the 2nd cycle. Nutrient accumulation showed the following decreasing order: K>N>Mg>Ca>P>S>Fe>Mn>Zn>Cu (1st cycle); and K>N>Mg>Ca>P>S>Fe>Zn>Mn>Cu (2nd cycle).

Downloads

Download data is not yet available.

References

ALEJANDRO, S. et al. Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 11: 300-327, 2020.

ALEXANDRE, J. R. et al. Zinco e ferro: de micronutrientes a contaminantes do solo. Natureza Online, 10: 23-28, 2012.

BARRA, P. J. et al. Phosphobacteria inoculation enhances the benefit of P-fertilization on Lolium perenne in soils contrasting in P-availability. Soil Biology and Biochemistry, 136: 107516-107527, 2019.

CAVALCANTE, T. J. et al. Macro and micronutrients uptake in biomass sorghum. Pesquisa Agropecuaria Tropical, 48: 364-373, 2018.

COSER, A. C. et al. Capim-elefante: formas de uso na alimentação animal. Juiz de Fora, MG: Embrapa Gado de Leite. 2000. 27 p. (Circular Técnica, 57).

CREMONESI, M. V. et al. Marcha de absorção, taxa de acúmulo e exportação de micronutrientes e alumínio pelo tabaco (Nicotiana tabacum L.). Revista de Ciências Agroveterinárias, 18: 13-23, 2019.

DOMINICO, C. F. T. et al. Acúmulo de matéria seca e absorção de nitrogênio, fósforo e potássio por azevém (Lolium multiflorum Lam.) cultivar Barjumbo. Research, Society and Development, 9: e8149109115, 2020.

FIORINI, I. V. A. et al. Acúmulo de matéria seca, clorofila e enxofre foliar em milho adubado com diferentes fontes de enxofre. Journal Bioenergy and Food Science, 4: 1-11, 2017.

GALINDO, F. S. et al. Acúmulo de matéria seca e nutrientes no capim-mombaça em função do manejo da adubação nitrogenada. Revista de Agricultura Neotropical, 5: 1-9, 2018.

GOMES, M. P. et al. Lixiviação de potássio em um Latossolo cultivado com café. Irriga, 27: 597-606, 2022.

HOLANDA, J. S. et al. Indicações para adubação de culturas em solos do Rio Grande do Norte. Parnamirim, RN: EMPARN, 2017. 35 p. (Série Documentos, 46).

HINOJOSA, L. A. et al. Producción y características agronómicas de cuatro variedades de pasto de corte del género Pennisetum, en Trinidad, Bolivia. Revista Científica Agrociências Amazônia, 20: 28-35, 2014.

LANGE, A. et al. Relações cálcio: magnésio e características químicas do solo sob cultivo de soja e milho. Nativa, 9: 294-301, 2021.

LIMA, R. L. F. A. Micorrizas arbusculares e absorção de fósforo em função da capacidade de fixação de fósforo do solo e da competição com a microbiota. Revista Brasileira de Geografia Física, 13: 1062-1079, 2020.

MARANHÃO, T. D. et al. Accumulation and partition of macronutrients in Pennisetum purpureum cv. Roxo managed under different growth ages and seasons. Revista Brasileira de Saúde e Produção Animal, 19: 223-240, 2018.

MARANHÃO, T. D. et al. Growth indexes of Pennisetum purpureum cv. Roxo cultivated in different seasons under rainfed conditions. Revista Brasileira de Saúde e Produção Animal, 21: e210122020--e210122034, 2020a.

MARANHÃO, T. D. et al. Nutritional status and accumulation of micronutrients in elephant grass cv. Roxo under rainfed conditions. Archivos de Zootecnia, 69: 86-94, 2020b.

MIYAZAWA, M. et al. Análise química de tecido vegetal. In: Silva, F. C. Manual de análises químicas de solos, plantas e fertilizantes. 2ª ed. rev. ampl. Brasília, Embrapa Informação Tecnológica, cap. 2, p. 191-233, 2009.

MUNIRAH, N. et al. The Effects of Zinc Application on Physiology and Production of Corn Plants. Australian Journal of Basic and Applied Sciences, 9: 362-367, 2015.

OLIVEIRA, L. C. A. et al. Frações de fósforo em função do uso de fertilizantes fosfatados em distintas classes de solo. Revista em Agronegócio e Meio Ambiente, 14: 1-15, 2021.

OLIVEIRA, L. E. C. et al. Nitrogen and phosphorus fertilizer application to Elephant grass (Cenchrus purpureus syn. Pennisetum purpureum) cultivar ‘Cameroon’ in an arenosol in Rio Grande do Norte, Brazil. Tropical Grasslands-Forrajes Tropicales, 10: 280-287, 2022.

PRADO, R. M. Manual de nutrição de plantas forrageiras. Jaboticabal, SP: Funep, 2008. 500 p.

RAIJ, B. V. Fertilidade do solo e manejo de nutrientes. Piracicaba, SP: International Plant Nutrition Institute, 2011. 420 p.

RAMOS, R. M. B. et al. Avaliação do desenvolvimento de alface crespa cultivar Vera: absorção de ferro e chumbo. Revista Agropecuária Técnica, 38: 185-190, 2017.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5.ed. Revisada e Ampliada. Brasília, DF: Embrapa Solos, 2018.

SILVA, J. V. S. et al. Adubação fosfatada no feijoeiro cultivado sob palhada de Brachiaria brizantha cv. Marandu. Revista Ceres, 65: 181-188, 2018.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre, RS: Artmed, 2017. 888 p.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa Solos, 2017. 574 p.

TRIPATHI, D. K. et al. Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant. 37: 139-153, 2015.

Downloads

Published

06-05-2024

Issue

Section

Scientific Article