Gas exchange and growth of colored cotton under salt stress and application of salicylic acid

Authors

  • Smyth Trotsk de Araújo Silva Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-9452-9655
  • Lauriane Almeida dos Anjos Soares Academic Unit of Agricultural Sciences, Universidade Federal de Campina Grande, Pombal, PB, Brazil https://orcid.org/0000-0002-7689-9628
  • Geovani Soares de Lima Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0001-9960-1858
  • Saulo Soares da Silva Post Graduate Program in Agroindustrial Systems, Universidade Federal de Campina Grande, Pombal, PB, Brazil https://orcid.org/0000-0002-1049-6519
  • Reynaldo Teodoro de Fátima Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0003-0463-4417
  • Hans Raj Gheyi Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-1066-0315
  • André Alisson Rodrigues da Silva Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0001-9453-1192
  • Jackson Silva Nóbrega Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-9538-163X

DOI:

https://doi.org/10.1590/1983-21252024v3712439rc

Keywords:

Gossypium hirsutum L.. Salinity. Growth regulator.

Abstract

The occurrence of water sources with high salt content stands out as a limiting factor for the expansion of irrigated agriculture in the semi-arid region. In this context, it is essential to look for strategies to mitigate the effects of salt stress, and the application of salicylic acid stands out. The objective of this study was to evaluate gas exchange and growth of the naturally colored cotton cv. BRS Jade under saline water irrigation and foliar application of salicylic acid under semi-arid conditions. The experiment was carried out in containers adapted as drainage lysimeters, under open air conditions at the Center of Science and Agri-Food Technology of the Federal University of Campina Grande in Pombal, Paraíba, Brazil. A randomized block design was adopted, in a 5 × 5 factorial scheme, with treatments resulting from the combination of five levels of electrical conductivity of irrigation water - ECw (0.3, 1.8, 3.3, 4.8, and 6.3 dS m-1) associated with five concentrations of salicylic acid - SA (0, 1.5, 3.0, 4.5, and 6.0 mM), with three replicates. Water salinity from 0.3 dS m-1 limited the photosynthetic efficiency and therefore the growth of cotton cv. BRS Jade. Foliar application of SA at concentration of 6.0 mM mitigated the effects of salt stress on the stomatal conductance and leaf transpiration of these plants. However, SA concentrations ranging from 0 to 6.0 mM reduce the internal CO2 concentration, growth in stem diameter and plant height, and root and stem dry mass accumulation of cotton plants cv. BRS Jade.

Downloads

Download data is not yet available.

References

ACOSTA-MOTOS, J. R. et al. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7: 1-38, 2017.

BEZERRA, J. R. C. et al. Evapotranspiração e coeficiente de cultivo do algodoeiro BRS-200 Marrom, irrigado. Revista Brasileira de Engenharia Agrícola e Ambiental, 14: 625-632, 2010.

DANTAS, M. V. et al. Gas exchange and photosynthetic pigments of West Indian cherry under salinity stress and salicylic acid. Comunicata Scientiae, 12: e3664, 2021.

DIAS, A. S. et al. Growth and gas exchanges of cotton under water salinity and nitrogen-potassium combination. Revista Caatinga, 33: 470-479, 2020.

GALVÃO SOBRINHO, T. et al. Foliar applications of salicylic acid on boosting salt stress tolerance in sour passion fruit in two cropping cycles. Plants, 12: e2023, 2023.

KOO, Y. M.; HEO, A. Y.; CHOI, H. W. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36: 1-10, 2020.

LI, A.; SUN, X.; LIU, L. Action of salicylic acid on plant growth. Frontiers in Plant Science, 13: e878076, 2022.

LIMA, G. S. et al. Gas exchanges and production of colored cotton under salt stress and nitrogen fertilization. Bioscience Journal, 33: 1495-1505, 2017.

LIMA, G. S. et al. Gas exchange, growth, and production of mini-watermelon under saline water irrigation and phosphate fertilization. Semina: Ciências Agrárias, 41: 3039-3052, 2020.

LIMA, G. S. et al. Gas exchange, growth, and quality of passion fruit seedlings cultivated with saline water. Semina: Ciências Agrárias, 42: 137-154, 2021.

LIMA, G. S. et al. Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31: 151-160, 2018.

NAEEM, M. et al. Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanzen, 72: 393-402, 2020.

NAJAR, R. et al. Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 153: 88-97. 2019.

NÓBREGA, J. S. et al. Effect of salicylic acid on the physiological quality of salt-stressed Cucumis melo seeds. Journal of Experimental Agriculture International, 23: 1-10, 2018.

NOVAIS, R. D.; NEVES, J. C. L.; BARROS, N. D. Ensaio em ambiente controlado. In: OLIVEIRA, A. J. et al. (Eds.). Métodos de pesquisa em fertilidade do solo. Brasília, DF: EMBRAPA, 1991. v. 1, cap. 2, p. 89-253.

PASTERNAK, T. et al. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiology, 180: 1725-1739, 2019.

RIBEIRO, J. E. S. et al. Respostas morfofisiológicas da combinação de ácido salicílico e estresse salino em Citrullus lanatus. Revista Brasileira de Ciências Agrárias, 15: e6638, 2020.

RICHARDS, L. A. Diagnosis and improvement of saline and alkali soils. Washington, U.S: Department of Agriculture, 1954. 160 p. (Handbook, 60).

SADOK, W.; LOPEZ, J. R.; SMITH, K. P. Transpiration increases under high‐temperature stress: Potential mechanisms, trade‐offs and prospects for crop resilience in a warming world. Plant, Cell & Environment, 44: 2102-2116, 2021.

SILVA, A. A. R. et al. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga, 33: 1092-1101, 2020.

SILVA, A. A. R. et al. Salicylic acid relieves the effect of saline stress on soursop morphysiology. Ciência e Agrotecnologia, 45: 1-12, 2021.

SILVA, A. F. et al. Antioxidant protection of photosynthesis in two cashew progenies under salt stress. Journal of Agricultural Science, 10: 388-404, 2018.

SILVA, E. S. et al. Adubação foliar nitrogenada e boratada no crescimento e produção do algodão colorido. Agropecuária Científica no Semiárido. 15: 86-91, 2019.

SOFY, M. R. et al. Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy, 10: e699, 2020.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa, 2017. 573 p.

VASQUES, R. S. et al. Tecidoteca: Estudo sobre a cultura do têxtil, roupas e acessórios produzidos com algodão colorido orgânico brasileiro. Brazilian Journal of Development, 6: 95481-95494, 2020.

VELOSO, L. L. S. A. et al. Attenuation of salt stress on the physiology and production of bell peppers by treatment with salicylic acid. Semina: Ciências Agrárias, 42: 2751-2768, 2021.

VELOSO, L. L. S. A. et al. Growth and gas exchange of soursop under salt stress and hydrogen peroxide application. Revista Brasileira de Engenharia Agrícola e Ambiental, 26: 119-125, 2022.

ZHANG, L. et al. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 9: 1-14, 2014.

ZRIG, A. et al. Potassium and calcium improve salt tolerance of Thymus vulgaris by activating the antioxidant systems. Scientia Horticulturae, 277: e109812, 2021.

Downloads

Published

06-05-2024

Issue

Section

Scientific Article