Evaluation of fungicides and Trichoderma spp. for controlling soil-borne fungal pathogens in melon crops

Authors

  • Breno de Holanda Almeida Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0003-2505-9925
  • Andréia Mitsa Paiva Negreiros Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0002-9544-2527
  • Naama Jessica de Assis Melo Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0002-1437-3436
  • Márcia Michelle de Queiroz Ambrósio Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0002-5033-9745
  • Josep Armengol Mediterranean Agroforestry Institute, Universitat Politècnica de València, Valencia, Spain https://orcid.org/0000-0003-3815-8578
  • Washington da Silva Department of Plant Pathology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America https://orcid.org/0000-0001-5558-286X
  • Rui Sales Júnior Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil https://orcid.org/0000-0001-9097-0649

DOI:

https://doi.org/10.1590/1983-21252024v3712462rc

Keywords:

Cucurbits. Biological control. Soil-born fungi. Hypocreaceae.

Abstract

Soil-borne fungal pathogens pose an increasing challenge to melon cultivation globally. The demand for reduced agrochemical use in melon farming, driven by limitations on chemical residues in the fruit, underscores the need for alternative control strategies. This study assesses the effectiveness of various fungicides-difenoconazole, fluazinam, fludioxonil, and procymidone-and Trichoderma spp. strains (T. asperellum, T. harzianum, and two strains of T. longibrachiatum) in combatting Ceratobasidium sp., Fusarium falciforme, Macrophomina phaseolina, and Monosporascus cannonballus. Fluazinam (EC50 from 0.01 to 0.88 mg/L) and fludioxonil (EC50 from 0.01 to 0.07 mg/L) emerged as the most effective fungicides in suppressing the mycelial growth of the pathogens in vitro, whereas procymidone (EC50 from 2.31 to 9.77 mg/L) was the least effective. Fludioxonil demonstrated significant efficacy against Ceratobasidium sp., F. falciforme, M. phaseolina, and M. cannonballus. In vitro assays revealed that all tested Trichoderma spp. strains significantly inhibited mycelial growth, with over 70% reduction for all pathogens examined. Field trials indicated that Trichoderma treatments could decrease disease incidence (28.00 to 69.33%) and severity (0.95 to 2.25) in melon crops. These findings illuminate the potential of various fungicides and Trichoderma spp. in managing soil-borne pathogens in melon cultivation. Such control methods might be employed independently or synergistically with other strategies like grafting onto resistant rootstocks or breeding for resistance to mitigate the threats these pathogens pose to global melon production.

Downloads

Download data is not yet available.

References

AGROFIT. Sistema de Agrotóxicos Fitossanitários. 2022. Disponível em:<http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons>. Acesso em: 7 Mar. 2022.

AMBRÓSIO, M. M .Q. et al. Screening a variable germoplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica, 206: 287-300, 2015.

AYALA-DOÑAS, A. et al. Management of soil-borne fungi and root-knot nematodes in cucurbits through breeding for resistance and grafting. Agronomy, 10: 1641, 2020.

BELLE, R. B.; FONTANA, D. C. Patógenos de solo: principais doenças vasculares e radiculares e formas de controle. Enciclopédia Biosfera, 15: 779, 2018.

CAVALCANTE, A. L. A. et al. Characterization of Five New Monosporascus Species: Adaptation to Environmental Factors, Pathogenicity to Cucurbits and Sensitivity to Fungicides. Journal of Fungi, 6: 169, 2020.

FAO - Food and Agriculture Organization of the United Nations. FAOSTAT - Crops and livestock products data. 2023. Disponível em: <http://www.fao.org/faostat/en/#home>. Acesso em: 20 set. 2023.

FERREIRA, D. F. Sisvar: A Computer Analysis System To Fixed Effects Split Plot Type Designs. Revista Brasileira de Biometria, 37: 529-535, 2019.

FONSÊCA NETO, J. et al. Efeito de adubo verde e Trichoderma harzianum na sobrevivência de Fusarium solani e no desenvolvimento do meloeiro. Revista AgroAmbiente On-line, 10: 44-49, 2016.

GARDES, M.; BRUNS, T. D. ITS primers with enhanced specificity for Basidiomycetes: Application to identification of mycorrhizae and rusts. Molecular Ecology, 2: 113-118, 1993.

GONÇALVES, C. R.; ALFENAS, A. C.; MAFIA, R. G. Armazenamento de microrganismos em cultura com ênfase em fungos fitopatogênicos. In: ALFENAS, A. C.; MAFIA, R. G. (Eds.). Métodos em Fitopatologia. Viçosa, MG: UFV, 2016. v. 1, cap. 3, p. 93-105.

GONZÁLEZ, V.; ARMIJOS, E.; GARCÉS-CLAVER, A. Fungal Endophytes as Biocontrol Agents against the Main Soil-Borne Diseases of Melon and Watermelon in Spain. Agronomy, 10: 820, 2020.

IBGE - Instituto Brasileiro de Geografia e Estatística. Produção Agrícola - Lavoura Temporária. 2022. Disponível em: <https://cidades.ibge.gov.br/brasil/pesquisa/14/10193>. Acesso em: 7 Mar. 2023.

KARTASHOV, M. I. et al. Co-application of Difenoconazole with Thymol Results in Suppression of a Parastagonospora nodorum Mutant Strain Resistant to this Triazole. KnE Life Sciences, 4: 1097-1106, 2019.

KESH, H.; KAUSHIK, P. Advances in melon (Cucumis melo L.) breeding: An update. Science Horticulturae, 282: e-110045, 2021.

KORSTEN, L.; JAGER, E. E. Mode of action of Bacillus subtilis for control of avocado post-harvest pathogens. South African Avocado Growers Association Yearbook, 18: 124-130, 1995.

LOUZADA, G. A. S. et al. Antagonist potential of Trichoderma spp. from distinct agricultural ecosystems against Sclerotinia sclerotiorum and Fusarium solani. Biota Neotropica, 9: 145-149, 2009.

MEDEIROS, E. V.; SALES JÚNIOR, R.; MICHEREFF, S. J. Eficiência de fungicidas no controle “in vitro” de Monosporascus cannonballus. Revista Caatinga, 19: 360-368, 2006.

MOKHTARI, W. et al. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance. Revue Marocaine des Sciences Agrononomiques et Vétérinaires, 5: 248-254, 2017.

NEGREIROS, A. M. P. et al. Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology, 167: 326-337, 2019.

NEGREIROS, A. M. P. et al. Characterization of adaptability components of Brazilian isolates of Macrophomina pseudophaseolina. Journal of Phytopathology, 168: 490-499, 2020.

O’DONNELL, K. et al. DNA Sequence-Based Identification of Fusarium: A Work in Progress. Plant Disease, 106: 1597-1609, 2022.

RHOUMA, A. et al. Antagonistic potential of certain soilborne fungal bioagents against Monosporascus root rot and vine decline of watermelon and promotion of its growth. Novel Research in Microbiology Journal, 2: 85-100, 2018.

SALES JÚNIOR, R. et al. Weeds as alternative hosts of melon colapse pathogens. Revista Ciência Agronômica, 43: 195-198, 2012.

SALES JÚNIOR, R. et al. Caracterização morfológica de fontes de resistência de meloeiro a Rhizoctonia solani. Horticultura Brasileira, 33: 196-202, 2015.

SALVIANO, A. M. et al. A cultura do melão. Brasília, DF: Embrapa, 2017. 202 p.

SÁNCHEZ, A. D. et al. Biocontrol con Trichoderma spp. de Fusarium oxysporum causal del “mal de almácigos” en pre y post emergencia en cebolla. Revista de la Facultad de Agronomía, 114: 61-70, 2015.

SILVA JÚNIOR, F. S. et al. Standardized sampling plan for common blossom thrips management in melon fields from north Brazil. Crop Protection, 134: 1-6, 2020.

SKIDMORE, A. M.; DICKINSON, C. H. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66: 57-64, 1976.

TONIN, R. F. B. et al. In vitro mycelial sensitivity of Macrophomina phaseolina to fungicides. Pesquisa Agropecuária Tropical, 43: 460-466, 2013.

ZHANG, S. et al. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathogens. Pesticide Biochemistry and Physiology, 147: 59-66, 2018.

Downloads

Published

06-05-2024

Issue

Section

Scientific Article