Adaptability and stability of biomass sorghum genotypes using GGE Biplot
DOI:
https://doi.org/10.1590/1983-21252025v3812509rcKeywords:
Sorghum bicolor. Plant breeding. Mega-environments. Forage.Abstract
The objective of this study was to evaluate the agronomic performance and select biomass sorghum genotypes for growing in different regions of Brazil based on adaptability and stability analysis using the GGE biplot method. The 25 genotypes evaluated were from trials of value for cultivation and use (VCU) of biomass sorghum of the Brazilian Agricultural Research Corporation (Embrapa Maize and Sorghum) Breeding Program, conducted in eight locations across Brazil (Sobral, CE; Jaguariúna and Narandiba, SP; Nova Porteirinha and Sete Lagoas, MG; Planaltina, DF; Vilhena, RO; and Terra Rica, PR) during the 2021-2022 crop season. A randomized block experimental design with three replications was used. The following traits of were subjected to joint analysis of variance: plant height, flowering, and fresh and dry matter yields. The confirmation of genotype-by-environment interaction (G×E) was followed by adaptability and stability analysis using the GGE biplot method for all traits. The adjusted means were used to obtain the mean clustering using the Scott-Knott test (p < 0.05). Biomass sorghum genotypes showed a longer growth cycle, taller plants, and higher biomass yield than forage sorghum genotypes. The experimental sorghum hybrids 202129B014 and 202129B016 and the commercial hybrid BRS 716 can be recommended for fresh and dry matter production in all tested environments due to their high adaptability and stability.
Downloads
References
AGUILAR, P. B. et al. Características agronômicas de genótipos de sorgo mutantes BMR e normais utilizados para corte e pastejo. Scientia Agraria Paranaensis, 14: 257-261, 2015.
ALMEIDA, L. G. F. et al. Composition and growth of sorghum biomass genotypes for ethanol production. Biomass & Bioenergy, 122: 343-348, 2019.
AWIO, B. et al. Identification of disease resistant bmr sorghum recombinant inbred lines derived from diverse donor and recurrent parents. Crop Protection, 180: 106630, 2024.
BATISTA, P. S. C. et al. Performance of grain sorghum hybrids under drought stress using GGE biplot analyses. Genetics and Molecular Research, 16: 1-12, 2017.
BECKER, H. C. Correlations among some statistical measures of phenotypic stability. Euphytica, 30: 835-840, 1981.
BEHLING NETO et al. Fermentation characteristics of different purposes sorghum silage. Semina: Ciências Agrárias, 38: 2607-2618, 2017.
BORÉM, A.; MIRANDA, G. V. Melhoramento de plantas. 5. ed. Viçosa, MG: UFV, 2009. 529 p.
CASTRO, F. M. R. et al. Agronomic and Energetic Potential of Biomass Sorghum Genotypes. American Journal of Plant Sciences, 6: 1862-1873, 2015.
DELGADO, I. D. et al. Genotype by environment interaction and adaptability of photoperiod-sensitive biomass sorghum hybrids. Bragantia, 78: 509-521, 2019.
DIAS, K. O. D. G. et al. Estimating genotype × environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Science, 58: 72-83, 2018.
GOMES, L. R. R. et al. Performance agronômica de híbridos de sorgo granífero estimada pelo método GGE biplot. Colloquium Agrariae, 15: 42-56, 2019.
HONGYU, K. et al. Comparação entre os modelos AMMI e GGE Biplot para os dados de ensaios multi-ambientais. Revista Brasileira Biometria, 33:139-155, 2015.
MEKI, M. N. et al. Performance evaluation of biomass sorghum in Hawaii and Texas. Industrial Crops & Products, 103: 257-266, 2017.
MENEZES, C. D. et al. Adaptabilidade e estabilidade de linhagens de sorgo em ambientes com e sem restrição hídrica. Revista Brasileira de Milho e Sorgo, 14: 101-115, 2015.
PARRELLA, R. A. C. et al. Cultivares. In: BORÉM, A.; PIMENTEL, L.; PARRELLA, R. (Eds.). Sorgo: do plantio à colheita. Viçosa, MG: Editora UFV, 2014. cap. 7, p. 169-187.
PARRELLA, R. A. C. et al. Desenvolvimento de Híbridos de Sorgo Sensíveis ao Fotoperíodo visando Alta Produtividade de Biomassa. 1. ed. Sete Lagoas, MG: Embrapa Milho e Sorgo, 2010. 23 p. (Boletim de Pesquisa e Desenvolvimento, 28).
QUEIROZ, F. E. et al. Effect of replacement of forage sorghum silage with biomass sorghum silage in diets for dairy heifers. Semina: Ciências Agrárias, 43: 121-140, 2022.
R CORE TEAM. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Available at: <https://www.r-project.org/>. Access on: Nov. 10, 2016.
RAMOS, J. C. P. et al. Effect of replacing forage sorghum silage with biomass sorghum silage in diets for F1 x Zebu lactating cows. Tropical Animal Health and Production, 53: 1-12, 2021.
ROSA, G. F. et al. Verificação da adaptabilidade e estabildiade em milhos pelo método AMMI. Revista Biodiversidade, 16: 68-81, 2017.
ROSA, M. A. B. et al. Characterization of forage, sweet and biomass sorghum for agronomic performance and ensilability. Revista Brasileira de Milho e Sorgo, 21: 1-22, 2022.
SILVA, C. L. et al. Seleção de genótipos de trigo para rendimento de grãos e qualidade de panificação em ensaios multiambientes. Revista Ceres, 62: 360-371, 2015.
SILVA, K. J. et al. Seleção para a produtividade de grãos, adaptabilidade e estabilidade de sorgo granífero. Revista Brasileira de Milho e Sorgo, 15: 335-345, 2016.
SILVA, K. J. et al. Identification of mega-environments for grain sorghum in Brazil using GGE biplot methodology. Agronomy Journal, 1: 1-12, 2021.
SOUZA, C. S. F. et al. Resistance of bmr energy sorghum hybrids to sugarcane borer and fall armyworm. Brazilian Journal of Biology, 84: 1-9, 2024.
TAVARES, T. et al. Adaptabilidade e estabilidade da produção de grão em feijão comum (Phaseolus vulgaris). Revista de Ciências Agrárias, 40: 411-418, 2017.
YAN, W. et al. Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science, 40: 597-605, 2000.
YAN, W. et al. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47: 641-653, 2007.
YAN, W. GGE Biplot vs. AMMI Graphs for genotypeby-environment data analysis. Journal of the Indian Society of Agricultural Statistics, 65: 181-193, 2011.
YOKOMIZO, G. K. I. et al. Desempenho de progênies de açaizeiro pelo GGE Biplot. Biota Amazônia, 10: 39-45, 2020.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).