Effects of iron and copper on emergence and physiology of Canavalia ensiformis (l.) DC

Authors

  • Isabella Fiorini de Carvalho Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0003-2425-4542
  • Patricia Borges Alves Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0009-0008-4097-2935
  • Tassia Caroline Ferreira Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0001-5662-8487
  • Beatriz Silvério dos Santos Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0001-7435-1872
  • Bruno Bonadio Cozin Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0002-9807-6286
  • Roberta Possas de Souza Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0003-4886-7490
  • Liliane Santos de Camargos Department of Biology and Zootechnics, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brazil https://orcid.org/0000-0002-0979-4447

DOI:

https://doi.org/10.1590/1983-21252025v3812686rc

Keywords:

Legumes. Reserve compounds. Phytotoxicity. Trace elements.

Abstract

Plants require iron (Fe) and copper (Cu) at low concentrations for metabolic functions; however, excess soil Fe and Cu can cause toxicity and affect plant development. The objective of this study was to assess the effects of soil Cu and Fe concentrations on seedling emergence, as well as on the metabolism of the main reserve compounds and the biomass in roots, stems, leaves, and cotyledons of Canavalia ensiformis. A greenhouse experiment was conducted in a completely randomized design; the Cu and Fe treatments in the soil were: (control, 50, 150, 250 and 350 mg dm-3) over a period of 10 days. Seedling emergence was not affected by the evaluated treatments; however, the results showed an increase in the emergence speed index (EVI) for the Fe treatment at a dose of 150 mg dm-3 of soil compared to 350 mg dm-3 of soil. Treatment with Cu at a dose of 350 mg dm-3 of soil reduced root length. Cu treatments reduced root dry mass. Fe treatments affected the content of soluble amino acids in the stems, leaves and cotyledons, as well as the total soluble proteins in the cotyledons and the carbohydrate content in the leaves. Cu treatments increased protein and carbohydrate content in leaves and starch content in cotyledons. High concentrations of Cu and Fe modify the production of nitrogenous compounds in the plant and reduce root biomass.

Downloads

Download data is not yet available.

References

ALAGOZ, S. M.; LAJAYER, B. A.; GHORBANPOUR, M. Biossíntese de prolina e carboidratos solúveis e seus papéis em plantas sob estresses abióticos. In: GHORBANPOUR, M.; SHAHID, M. A. (Eds.). Mitigadores de estresse de plantas: Tipos, Técnicas e Funções. 1. ed. Cham, Suíça: Springer, 2023. cap. 10, p. 169-185.

AMIN, H. et al. Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geology, Ecology, and Landscapes, 5: 53-64, 2021.

ANDRADE, R. A. et al. Cover crop rates and decomposition of green manure in Southwestern Amazon. Revista em Agronegócio e Meio Ambiente, 15: 10, 2022.

ANDRADE, S. A. L. et al. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68: 198-207, 2010.

BIELESKI, R. L.; TURNER, N. A. Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Analytical Biochemistry, 17: 278-293, 1966.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254, 1976.

BRASIL - Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. 1. ed. Brasília, DF: Secretaria de Defesa Agropecuária, 2009. 399 p.

CAMARGOS, L. S. et al. Alocação de compostos nitrogenados de reserva durante a germinação de sementes de Canavalia brasiliensis. Biotemas, 26: 4, 2013.

CHIA, J. C. et al. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. The Plant Cell, 35: 2157-2185, 2023.

DUAN, C. et al. Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 137: 107574, 2019.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Feijão de porco, leguminosa para adubação verde e cobertura do solo. Belém, PA: EMBRAPA-CPATU, 1998. 1 p.

FASANI, E. et al. Metal detoxification in land plants: from bryophytes to vascular plants. STATE of the Art and Opportunities. Plants, 11: 237, 2022.

GARCIA-MOLINA, A. et al. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. The Plant Journal, 103: 2119-2138, 2020.

GHOSH, S.; SETHY, S. Effect of heavy metals on germination of seeds. Journal of Natural Science, Biology and Medicine, 4: 272, 2013.

MAGUIRE, J. D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor 1. Crop Science, 2: 176-177, 1962.

MARTINS, C. C. et al. Posição da semente na semeadura e tipo de substrato sobre a emergência e crescimento de plântulas de Schizolobium parahyba (Vell.) S. F. Blake. Ciência Florestal, 22: 845-852, 2012.

RAIJ, B. V. et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas, SP: Instituto Agronômico. 2011. 285 p.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.

SANTOS, L. F. C. et al. Growth and mineral composition of legume cover crops for sustainable agriculture in southern Mexico. Tropical Agriculture, 100: 182-190, 2023.

SHARASIA, P. L.; GARG, M. R.; BHANDERI, B. M. Beans. In: SHARASIA, P. L.; GARG, M. R.; BHANDERI, B. M. (Eds.). Pulses and their by-products as animal feed. Roma, Itália: Food and Agriculture Organizations of the United Nations, 2018. cap. 2, p. 8-9.

SOARES, D. O. et al. Chemical properties of soil and cassava yield as a function of weed management by cover crops in the Amazon ecosystem. Sustainability, 14: 1886, 2022.

SUN, Y. et al. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Chemosphere, 251: 126432, 2020.

SUPRASANNA, P.; NIKALJE, G. C.; RAI, A. N. Osmolyte accumulation and implications in plant abiotic stress tolerance. In: NOUSHINA, I.; RAHAT, N.; NAFEES A. K. (Eds.). Osmolytes and plants acclimation to changing environment: emerging omics technologies. New Delhi: Springer India, 2016. cap. 1, p. 1-12.

TAIZ, L. et al. Plant physiology and development. 6. ed. Porto Alegre, RS: Artmed. 2017. 88 p.

UMBREIT, W. W. et al. A colorimetric method for transaminase in serum or plasma. Journal of Laboratory and Clinical Medicine, 49: 454-459, 1957.

WISZNIEWSKA, A. et al. Insight sobre mecanismos de tolerância a múltiplos estresses em um halófito Aster tripolium submetido a estresse de salinidade e metais pesados. Ecotoxicology Environmental Safety, 180: 12-22, 2019.

YADAV, M.; GEORGE, N.; DWIBEDI, V. Emergence of toxic trace elements in plant environment: Insights into potential of silica nanoparticles for mitigation of metal toxicity in plants. Environmental Pollution, 333: 122112, 2023.

YANG, Q. et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642: 690-700, 2018.

YEMM, E.; WILLIS, A. J. The estimation of carbohydrate in plant extracts by anthrone. Biochemical Journal, 57: 508-514, 1954.

YEMM, E.W.; COCKING, E. C.; RICKETTS, R. E. The determination of amino-acids with ninhydrin. Analyst, 80: 209-213, 1955.

Downloads

Published

10-10-2024

Issue

Section

Scientific Article