APPARENT VISCOSITY OF MYRTLE PULP INTEGRAL IN DIFFERENT TEMPERATURES

Authors

  • Regilane Marques Feitosa Universidade Federal de Campina Grande
  • Rossana Maria Feitosa de Figueirêdo Universidade Federal de Campina Grande
  • Alexandre José de Melo Queiroz Universidade Federal de Campina Grande
  • Elisabete Piancó de Souza Universidade Federal de Campina Grande
  • Vidina de Melo Silva Universidade Federal de Campina Grande

DOI:

https://doi.org/10.1590/1983-21252015v28n426rc

Keywords:

Eugenia gracillima Kiaersk. Rheology. Arrhenius.

Abstract

In fruit pulp industrialization often use thermal processes to (heating and/or cooling) that may cause changes in its viscosity, which causes the study of the influence of temperature on the rheological behavior of this type of product is of great importance. Data of the apparent viscosity of fruit pulp are used in equipment design and process optimization. The research objective was to evaluate the influence of temperature on the apparent viscosity of the Myrtle pulp. The rheological analysis was conducted on a Brookfield viscometer model DV-II +Pro. The apparent viscosity curves as a function of strain rate were described by rheological models Sisko, Power Law, and Falguera-Ibarz. The full Myrtle pulp was classified as non-Newtonian fluid and shear thinning. The behavior of this fluid can be well described by models Sisko, Law of Power and Falguera-Ibarz, especially the Sisko model. The effect of temperature on the apparent viscosity was described by Arrhenius equation with activation energy presenting high values at low shear rate.

Downloads

Download data is not yet available.

References

AHMED, J.; RAMASWAMY, H. S.; HIREMATH, N. The effect of high pressure treatment on rheological characteristics and colour of mango pulp. Journal of Food Science and Technology, Oxford, v. 40, n. 8, p. 885–895, 2005.

ARAUJO, D. R. Desenvolvimento, maturidade fisiológica e armazenamento dos frutos da murta. 2013. 158 f. Tese (Doutorado em Engenharia Agrícola: Área de Concentração em Armazenamento e Processamento de Produtos Agrícolas) – Universidade Federal de Campina Grande, Campina Grande, 2013.

AUGUSTO, P. E. D. et al. Rheological behavior of tomato juice: steady-state shear and time-dependent modeling. Food Bioprocess Technology, Dublin, v. 5, n. 5, p. 1715–1723, 2012a.

AUGUSTO, P. E. D.; IBARZ, A.; CRISTIANINI, M. Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Time-dependent and steady-state shear. Journal of Food Engineering, London, v. 111, n. 4, p. 570–579, 2012b.

BEZERRA, J. R. M. V. et al. Estudo do efeito da temperatura nas propriedades reológicas da polpa de morango (Fragaria ananassa). Ambiência, Guarapuava, v. 5, n. 1, p. 37-47, 2009.

CLERICI, M. T. P. S.; CARVALHO-SILVA, L. B. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International, Canada, v. 44, n. 7, p. 1658–1670, 2011.

CHIN, N. L. et al. Modelling of rheological behaviour of pummelo juice concentrates using master-curve. Journal of Food Engineering, London, v. 93, n. 2, p. 134–140, 2009.

DAK, M.; VERMA, R. C.; JAAFFREY, S. N. A. Rheological properties of tomato concentrate. Journal of Food Engineering, London, v. 4, n. 7, p. 1556-3758, 2008.

FALGUERA, V.;IBARZ, A. A new model to describe flow behaviour of concentrated orange juice. Food Biophysics, New Jersey, v. 5, n. 2, p. 114–119, 2010.

GRANGEIRO, A. A. et al. Viscosidades de polpas concentradas de figo-da-índia. Revista Brasileira de Agrociência, Pelotas, v. 13, n. 2, p. 219-224, 2007.

HAMINIUK, C. W. I. et al. Influence of temperature on the rheological behavior of whole aracá pulp (Psidium cattleianum sabine). Food Science and Technology, Oxford, v. 39, n. 4, p. 427–431, 2006.

KAYA, A.; KO, S.; GUNASEKARAN, S. Viscosity and color change during in situ solidification of grape pekmez. Food Bioprocess Technology, Dublin, v. 4, n. 2, p. 241–246, 2011.

KECHINSKI, C. P. et al. Rheological behavior of blueberry (Vaccinium ashei) purees containing xanthan gum and fructose as ingredients. Food Hydrocolloids, Wrexham, v. 25, n. 3, p. 299-306, 2011.

MACEIRAS, R.; ÁLVAREZ, E.; CANCELA, M. A. Rheological properties of fruit purees: effect of cooking. Journal of Food Engineering, London, v. 80, n. 3, p. 763–769, 2007.

MIRANDA, V. A. M. et al. Viscosidade aparente de polpas de graviola com diferentes concentrações. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 13, n. Especial, p. 363-374, 2011.

NINDO, C. I. et al. Rheological properties of blueberry puree for processing applications. Food Science and Technology, Oxford, v. 40, n. 2, p. 292–299, 2007.

OHATA, S. M.; VIOTTO, L. A. Comportamento reológico de constituintes do ovo. Brazilian Journal of Food Technology, Campinas, v. 14, n. 1, p. 10-18, 2011.

OLIVEIRA, R. C.; BARROS, S. T. D.; ROSSI, R. M. Aplicação da metodologia bayesiana para o estudo reológico da polpa de uva. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 11, n. 1, p. 73-80, 2009.

RIGO, M.; BEZERRA, J. R. M. V.; CÓRDOVA, K. R. V. Estudo do efeito da temperatura nas propriedades reológicas da polpa de butiá (Butia eriospatha). Ambiência, Guarapuava, v. 6, n. 1 p. 25-36, 2010.

RHA, C. Theories and principles of viscosity. In: RHA, C. Theory: determination and control of physical properties of food materials. Dordrecht, The Netherlands: Reidel, 1975.p. 7–249.

RUFINO, M. S. M. et al. Quality for fresh consumption and processing of some non-traditional tropical fruits from Brazil. Fruits, Cambridge, v. 64, n. 6, p. 361–370, 2009.

SENGÜL, M.; ERTUGAY, M. F.; SENGÜL, M. Rheological, physical and chemical characteristics of mulberry pekmez. Food Control, London, v. 16, n. 1, p. 73–76, 2005.

SILVA, L. M. R. et al. Ajuste dos parâmetros reológicos de polpas de acerola, caju e manga em função da temperatura: modelos de Ostwald-de-Waelle, Herschel-Bulkley e Casson. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 14, n. 1, p. 37-49, 2012.

SHAMSUDIN, R. et al. Rheological properties of ultraviolet-irradiated and thermally pasteurized Yankee pineapple juice. Journal of Food Engineering, London, v. 116, n. 2, p. 548–553, 2013.

TONON, R. V. et al. Steady and dynamic shear rheological properties of açai pulp. Journal of Food Engineering, London, v. 92, n. 4, p. 425–431, 2009.

VANDRESEN, S. et al. Temperature effect on the rheological behavior of carrot juices. Journal of Food Engineering, London, v. 92, n. 3, p. 269–274, 2009.

VIDAL, J. R. M. B. et al. Propriedades reológicas da polpa de manga (Mangifera indica L. cv. Keitt) centrifugada. Ciência e Agrotecnologia, Lavras, v. 30, n. 5, p. 955-960, 2006.

Published

19-11-2015

Issue

Section

Food Engineering