QUALITY AND ANTIOXIDANT ACTIVIY OF TOMATO CULTIVATED UNDER DIFFERENT SOURCES AND DOSES OF NITROGEN

Authors

  • John Silva Porto Department of Plant and Animal Science, Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA
  • Tiyoko Nair Hojo Rebouças Department of Plant and Animal Science, Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA
  • Maria Olimpia Batista Moraes Department of health education, Instituto Federal da Bahia, Eunápolis, BA
  • Marinês Pereira Bonfim Center of Agrifood Science and Technology, Universidade Federal Campina Grande, Pombal, PB
  • Odair Lacerda Lemos Department of Plant and Animal Science, Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA
  • José Magno Queiroz Luz Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Uberlândia, MG

DOI:

https://doi.org/10.1590/1983-21252016v29n401rc

Keywords:

Solanum lycopersicum L.. Bioactive compounds. Antioxidant capacity. Ammonium. Nitrate.

Abstract

Tomatoes are an important component of the human diet because they are rich in minerals and antioxidants that sequester free radicals in cells, preventing various disorders that affect human health. Here, we aimed to evaluate the effects of different nitrogen sources and concentrations on antioxidant capacity and physical and chemical quality of tomato fruit. The experiment was conducted in Vitória da Conquista, state of Bahia, Brazil, in the experimental field of Universidade Estadual do Sudoeste da Bahia. The experimental setup included a randomized block design with four replicates in a factorial layout of 3 × 3 + 1 (control), for a total of 40 plots. The three treatments comprised different nitrogen sources (calcium nitrate, urea, and ammonium sulfate), applied in three doses (140, 280, and 420 kg ha- 1). We evaluated firmness, pH, titratable acidity - TA, soluble solid - SS, SS/TA ratio, ascorbic acid, carotenoids, flavonoids, phenolic compounds and DPPH inhibition, were evaluated after samples were harvested. However, increasing concentrations of N adversely affected the acidity and led to an increase in the SS/TA ratio. Increasing the N concentration also reduced the content of bioactive compounds. excluding carotenoids, which consequently impaired antioxidant activity.

Downloads

Download data is not yet available.

References

ANZA, M.; RIGA, P.; GARBISU, S. Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. Journal of Food Quality, Nova Jersey, v. 29, n. 1, p. 16–37, 2006.

AWAD, A. M.; DE JAGER, A; VAN WESTING, L. M. Flavonoid and chlorogenic acid levels I Apple fruit: characterizations of variation. Scientia Horticulturae, Filadélfia, v. 83, n. 3, p. 249-263, 2000.

BÉNARD, C. et al. Effects of low nitrogen supply on tomato (Solanum lycopersicum L.) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry, Washington, v. 57, n. 10, p. 4112–4123, 2009.

BONDET, V.; BRAND-WILLIAMS, W.; BERSET, C. Kinetics and Mechanisms of Antioxidant Activity using the DPPH Free Radical Method. Lebensmittel-Wissenschaft und-Technologie, Filadélfia, v. 30, n. 6, p. 609–615, 1997

BORGUINI, R. G. et al. Antioxidant Potential of Tomatoes Cultivated in Organic and Conventional Systems. Brazilian archives of biology and technology, Curitiba, v. 56, n. 4, p. 521-529, 2013

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, Filadélfia, v. 28, n. 1, p. 25-30, 1995.

BRITTO, D. T.; KRONZUCKER, H. J. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant Cell Environ, Nova Jersey, v. 28, n. 11, p. 1396–1409, 2005.

DUMAS, Y. et al. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture. Nova Jersey v. 83, n. 5, p. 369–382, 2003.

FERRANTE, A, et al. Effect of nitrogen fertilisation levels on melon fruit quality at the harvest time and during storage. Journal of the Science Food and Agriculture, Nova Jersey, v. 88, n. 4, p. 707–713, 2008.

FERREIRA, D. A. Sisvar: a computer statistical analysis system. Ciências e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, 2011.

FERREIRA, M. M. M. et al. Qualidade do tomate em função de doses de nitrogênio e da adubação orgânica em duas estações. Horticultura Brasileira, Brasília, v. 24, n. 2, p. 141-145, 2006.

FLORES, P. et al. Tomato yield and quality as affected by nitrogen source and salinity. Agronomie, Lyon, v. 23, n. 3, p. 249–256, 2003.

FRITZ, C. et al. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. The Plant Journal, Oxford, v. 46, n. 4, p. 533–548, 2006.

GRAZIANI, G. et al. Effect of peeling and heating on carotenoid content and antioxidant activity of tomato and tomato-virgin oliveoil systems. European Food Research Technology, Heidelberg, v. 216, n. 2, p. 116-121, 2003.

GUIL-GUERRERO, J. L.; REBOLLOSO-FUENTES, M. M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum L.) varieties. Journal of Food Composition and Analysis, Filadélfia, v. 22, n. 2, p. 123–129, 2009.

HASSAN, S. A. et al. Nitrate, Ascorbic Acid, Mineral and Antioxidant Activities of Cosmos caudatus in Response to Organic and Mineral-Based Fertilizer Rates. Molecules, Basel, v. 17, n. 7, p. 7843-7853, 2012.

HEEB, A. et al. Nitrogen form affects yield and taste of tomatoes. Journal of the Science Food and Agriculturae, Weinheim, v. 85, n. 8, p. 1405–1414, 2005.

IBRAHIM, M. H. et al. Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah). International Journal of Molecular Science, Basel, v. 13, n. 1, p. 393-408, 2012.

ILAHY, R. et al. Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicumL.) cultivars grown in Southern Italy. Scientia Horticulturae, Filadélfia v. 127, n. 3, p. 255–261, 2011.

JAVANMARDI, J.; KUBOTA, C. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, Filadélfia, v. 41, n. 2, p. 151–155, 2006.

JONES JUNIOR J. B. Tomato plant culture: in the field, greenhouse and home garden. Florida: CRC Press, 1999, 199 p.

KEMAL, G. M. et al. Changes in phytosterols in rapeseed (Brassica napus L.) and their interaction with nitrogen fertilization. International Journal of Agricultural and Biology, Faisalabad, v. 9, n. 2, p. 250–253, 2007.

KOBRYŃ, J.; HALLMANN, E. The Effect of Nitrogen Fertilization on the Quality of Three Tomato Types Cultivated on Rockwool. Acta Horticulturae, Korbeek, v. 691, n. 1, p. 56-58, 2005.

KOPSELL, D. A. et al. Influence of Nitrogen and Sulfur on Biomass Production and Carotenoid and Glucosinolate Concentrations in Watercress (Nasturtium officinale R. Br.). Journal of Agricultural and Food Chemistry, Washington, v. 55, n. 26, p. 10628–10634, 2007.

KOPSELL, D. A.; KOPSELL, D. E., Accumulation and bioavility of dietary carotenoids in vegetable crops. Trends Plant Science, Cambridge, v. 11, n. 10, p. 499–507, 2006.

MARINHO, C. S. et al. Fontes e doses de nitrogênio e a qualidade dos frutos do mamoeiro. Scientia Agrícola, Piracicaba, v. 58, n. 2, p. 345-348, 2001.

NÚÑEZ-RAMÍREZ, F. et al. Nitrogen fertilization effect on antioxidants compounds in fruits of habanero chili pepper (Capsicum chinense ). International of Journal Agricultural and Biology. Faisalabad, v. 13, n. 13, p. 827–830, 2011.

OLIVEIRA, M. N. S. et al. Estádio de maturação dos frutos e fatores relacionados aos aspectos nutritivos e de textura da polpa de pequi (Caryocar brasiliense Camb). Revista Brasileira de Fruticultura, Jaboticabal, v. 28, n. 3, p. 380-386, 2006.

PARR, A. J.; BOLWELL, G. P. Review: Phenols in the plant and in the man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of Science Food and Agriculture, Weinheim, v. 80, n. 7, p. 985–1012, 2000.

ROCHA, C. B.; SILVA, J. Nota científica: Atividade antioxidante total em tomates produzidos por cultivos orgânico e convencional. Brazillian Journal Food Technology, Campinas, v. 14, n. 1, p. 27-30, 2011.

SCHWARTZ, E. et al. Avaliação de populações de Butia capitata de santa vitória do palmar. Revista Brasileira de Fruticultura, Jaboticabal, v. 32, n. 3, p. 736-745, 2010.

SIMONNE, A. H. et al. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. Journal of Plant Nutrition, Kiel, v. 30, n. 6, p. 927–935, 2007.

STROHECKER, R.; HENNING, H. M. Analisis de vitaminas: métodos comprobados. Madrid: Paz Montolvo, 1967. 428 p.

TOOR, R. K.; SAVAGE, G. P.; HEEB, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, Filadélfia, v. 19, n. 1, p. 20–27, 2006.

WARNER, J.; ZHANG, T. Q.; HAO, X. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Canadian Journal of Plant Science, Ottawa, v. 24, n. 3, p. 865-861, 2004.

WETTASINGHE, M.; SHAHIDI, F. Evening Primrose Meal: A Source of Natural Antioxidants and Scavenger of Hydrogen Peroxide and Oxygen-Derived Free Radicals. Journal of Agricultural and food Chemistry, Davis, v. 47, n. 5, p. 1801-1812, 1999.

Downloads

Published

13-09-2016

Issue

Section

Agronomy