MECHANISMS CONTROLLING SURFACE WATER QUALITY IN THE COBRAS RIVER SUB-BASIN, NORTHEASTERN BRAZIL

Authors

  • Alexandre de Oliveira Lima Empresa de Assistência Técnica e Extensão Rural, Natal, RN.
  • Francisco Pinheiro Lima-Filho Department of Geology, Universidade Federal do Rio Grande do Norte, Natal, RN.
  • Nildo da Silva Dias Department of Environmental Sciences and Technological, Universidade Federal Rural do Semi-Árido.
  • Priscila Regina do Aragão Rego Instituto Nacional de Colonização e Reforma Agrária, Natal, RN.
  • Flávio Favaro Blanco Empresa Brasileira de Pesquisa Agropecuária, Embrapa Meio-Norte, Teresina, PI.
  • Miguel Ferreira Neto Department of Environmental Sciences and Technological, Universidade Federal Rural do Semi-Árido, Mossoró, RN.

DOI:

https://doi.org/10.1590/1983-21252017v30n120rc

Keywords:

Desertification. Semiarid. Salinity.

Abstract

Stream water quality is dependent on many factors, including the source and quantity of the streamflow and the types of geology and soil along the path of the stream. This study aims to evaluate the origin and the mechanisms controlling the input of ions that effect surface water quality in the sub-basin of the Rio das Cobras, Rio Grande do Norte state, Northeastern Brazil. Thirteen ponds were identified for study: three in the main river and ten in the tributaries between, thus covering the whole area and lithology of the sub-basin. The samples were collected at two different times (late dry and rainy periods) in the hydrological years 2009 and 2010, equating to total of four collection times. We analyzed the spatial and seasonal behavior of water quality in the sub-basin, using Piper diagrams, and analyzed the source of the ions using Guibbs diagram and molar ratios. With respect to ions, we found that water predominate in 82% sodium and 76% bicarbonate water (cations and anions, respectively). The main salinity control mechanism was related to the interaction of the colloidal particles (minerals and organic sediment) with the ions dissolved in water. Based on the analysis of nitrates and nitrites there was no evidence of contamination from anthropogenic sources.

Downloads

Download data is not yet available.

References

AL-SHAIBANI, A. M. Hydrogeology and hydrochemistry of the aquifer, shalow western Saud Arabia. Hydrogeology Journal, Berlin, v. 16, n. 1, p. 155-165, 2008.

AYERS, R. S.; WESTCOT, D.W. A qualidade da água na agricultura. 2. ed. Campina Grande, PB: UFPB, 1999, 153 p. (Estudos de Irrigação e Drenagem 29).

BARROSO, A. A. et al. Avaliação da qualidade da água para irrigação na região Centro Sul no Estado do Ceará. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 15, n. 6, p. 588-593, 2011.

BARROSO, A. de A. F. et al. Avaliação qualitativa das águas subterrâneas para irrigação na região do Baixo Jaguaribe – Ceará. Revista Brasileira de Agricultura Irrigada, Fortaleza, v. 4, n. 3, p. 150–155, 2010.

BOWMER, K. H. Water resource protection in Australia: Links between land use and river health with a focus on stubble farming systems. Journal of Hydrology, Amsterdam, v. 403, n. 1-2, p. 176-185, 2011.

BRAZIL. Programa de Ação Nacional de Combate à Desertificação e Mitigação dos Efeitos da Seca (PAN-Brasil). 1. ed. Brasília, DF: Ministério do Meio Ambiente, 2004. 112 p.

EMBRAPA. Manual de análises químicas de solos, plantas e fertilizantes. 1. ed. Rio de Janeiro, RJ: Centro nacional de Pesquisa em Solos, 1999. 370 p.

GIBBS, R. Mechanisms controlling world water chemistry. Science, Washington, v. 170, n. 3962, p. 1088-1090, 1970.

HAYNES, D. et al. Assessment of the Water Quality and Ecosystem Health of the Great Barrier Reef (Australia): Conceptual Models. Environmental Management, v. 40, p. 993-100, 2007.

HELENA, B. et al. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, Amsterdam, v. 34, n. 3, p. 807-816, 2000.

JALALI, M. Assessment of the chemical components of famenin groundwater, Western Iran. Environmental Geochemistry and Health, v. 29, n. 5, p. 357-374, 2007.

JARDIM DE SÁ, E. F. Mapa Geológico do Estado do Rio Grande do Norte. 1: 500,000. Christmas: DNPM/UFRN/PETROBRAS/CPRM, 1998.

KÖPPEN, W. Climatologia: com um estúdio de los climas de la tierra. In: Climatology. Laboratory of Climatology, New Gersey. 1948. 104 p.

PEREIRA, L. et al. A salinidade das águas superficiais e subterrâneas na bacia da Gameleira, Município de Aiuaba/CE, Revista Água Subterrâneas, São Paulo, v. 20, n. 2, p. 9-18, 2006.

PORTO FILHO, F. Q. et al. Evolução da salinidade e pH de solo sob cultivo de melão irrigado com água salina. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 15, n. 11, p. 1130-1137, 2011.

RAVIKUMAR, P; SOMASHEKAR, R. K.; ANGINE, M. Hydrochemistry and evaluation of groundwater Hydrochemistry and evaluation of suitability for irrigation and drinking purposes in the Markandeya river basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, Berlin, v. 173, n. 1-4, p. 459-487, 2011.

SINGH, K. P. et al. Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of River Gomti (India) – a case study. Water Research, Amsterdan, v. 38, n. 18, p. 3980-3992, 2004.

XU, H. et al. Spatiotemporal Variation Assessment and Analysis of Water Quality in the River Zhangweinan Basin, China. Procedia Environmental Sciences, Amsterdam, v. 13, p. 1641-1652, 2012.

YADANA, S. M. The hydrochemical framework of surface water basins in southern Ghana. Environment Geology, Berlin, v. 57, n. 4, p. 789-796, 2009.

Downloads

Published

02-12-2016

Issue

Section

Agricultural Engineering