EFFECT OF PARTICLE SIZE AND BACTERIAL INOCULANT ON THE TEMPERATURE, DENSITY AND pH OF PEARL MILLET SILAGES

Authors

  • Aníbal Coutinho do Rêgo Department of Animal Production and Health, Universidade Federal Rural da Amazônia, Belém, PA
  • Gustavo Rezende Siqueira Agência Paulista de Tecnologia dos Agronegócios, Colina, SP
  • Geraldo Benedito de Souza Agroceres Multimix Nutrição Animal LTDA, Animal Nutrition - Cattle, Rio Claro, SP
  • Ricardo Dias Signoretti Agência Paulista de Tecnologia dos Agronegócios, Colina, SP
  • Flávio Dutra de Resende Agência Paulista de Tecnologia dos Agronegócios, Colina, SP

DOI:

https://doi.org/10.1590/1983-21252016v29n424rc

Keywords:

Inoculants. Lactobacillus plantarum. Pennisetum glaucum (L.) R. B.. Propionibacterium acidipropionic. Stack silo.

Abstract

The present study aimed to investigate the temperature at different depths of the stack silo and strata front profile before and after the removal of silage. Also, the pH values in the upper and lower profile and the silage density of the fresh materials (FM) and dry matter (DM) in pearl millet silages with particle sizes of 5 or 20 mm, with or without inoculant, were assessed, using corn silage as controls. There was an interaction (P<0.05) silage × stratum profile and silage × depth profile for the temperatures before the removal of silage, and the pearl millet silages had lower temperatures in the upper stratum compared to corn. The temperature gradient between the silage and environment pearl millet and corn silos were smaller in the lower stratum profile. The temperature gradient after the removal of the silage was less than 50 cm deep at all the pearl millet silos. There were no differences in the densities of the FM and DM of the studied silages. The pH values of the silages before their removal were higher in the upper stratum and lower stratum in the bottom of all the pearl millet silages, in contrast with corn silage. The pearl millet silos had lower pH values in the lower stratum of the silo. Silages with 5 mm particle size provide lower temperatures in the middle portion of the panel before the removal of the silage. The use of bacterial inoculant in this study did not change the characteristics evaluated.

Downloads

Download data is not yet available.

References

Association of Official Analytical Chemists – AOAC. Official methods of analysis of the Association of Official Analytical Chemists. 15. ed. Arlington, Virginia, 1990. 1230 p.

BERNARDES, T. F.; RÊGO, A. C. Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science, Champaign, v. 97, n. 3, p. 1852 – 1861, 2014.

BOLSEN, K. K. et al. Rate and extent of top spoilage losses in horizontal silos. Journal of Dairy Science, Champaign, v. 76, n. 10, p. 2940-2962, 1993.

BOLSEN, K. K. et al. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. Journal of Dairy Science, Champaign, v. 75. n. 11. p. 3066-3083, 1992.

BORREANI, G.; TABACCO, E. The relationship of silage temperature with the microbiological status of the face of corn silage bunker. Journal of Dairy Science, Champaign, v. 93, n. 6, p. 2620-2629, 2010.

D’AMOURS, L.D.; SAVOIE, P. Density profile of corn silage in bunker silos. Canadian Biosystems Engineering, Manitoba, v. 47, n. 1, p. 221-228, 2005.

FERERES, E., SORIANO, M. A. Deficit irrigation for reducing agricultural water use: Integrated approaches to sustain and improve plant production under drought stress special issue. Journal of Experimental Botany, Oxford, v. 58, n. 2, p. 147-159, 2007.

FILYA, I., et al. The effect of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability of wheat, sorghum and maize silages. Journal of Applied Microbiology, Oxford, v. 97, n. 4, p. 818-826, 2004.

GUIMARÃES JÚNIOR, R. I. et al. Matéria seca, proteína bruta, nitrogênio amoniacal e pH das silagens de três genótipos de milheto (Pennisetum glaucum (L). R. Br.) em diferentes períodos de fermentação. Revista Brasileira de Milho e Sorgo, Sete Lagoas, v. 4, n. 2, p. 251-258, 2005.

HILL, J.; LEAVER, J. D. Changes in chemical composition and nutritive value of urea treated whole crop wheat during exposure to air. Animal Feed Science and Technology, Amsterdam, v. 102, n. 1, p. 181- 195, 2002.

KIM, S. C.; ADESOGAN, A. T. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. Journal of Dairy Science, Champaign, v. 89, n. 8, p. 3122-3132, 2006.

LICITRA, G.; HERNANDEZ, T. M.; VAN SOEST, P. J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, Amsterdam, v. 57, n. 4, p. 347-358, 1996.

McDONALD, P.; HENDERSON, A. R.; HERON, S. The biochemistry of silage. 2.ed. Marlow: Chalcombe, 1991. 340 p.

MUCK, R. P.; SAVOIE, P.; HOLMES, B. J. Laboratory assessment of bunker silo density, part I: Alfalfa and grass. Applied Engineering in Agriculture, Saint Joseph, v. 20, n. 2, p. 157-164, 2004.

NAGAZ, K. et al. Yield and water-wse efficiency of pearl millet (Pennisetum glaucum (L.) R. Br.) under deficit irrigation with saline water in arid conditions of southern Tunisia. Research Journal of Agronomy, Islamabad, v. 3, n. 1, p. 9-17, 2009.

NEUMANN, M. et al. Efeito do tamanho de partícula e da altura de corte de plantas de milho na dinâmica do processo fermentativo da silagem e no período de desensilagem. Revista Brasileira de Zootecnia, Viçosa, v. 36, n. 5, p. 1603-1613, 2007.

NISHINO, N., TOUNO, E. Ensiling characteristics and aerobic stability of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. Journal of the Science of Food and Agriculture, Great Britain, v. 85, n. 11, p. 1882-1888, 2005.

ROOKE, J. A.; HATFIELD, R. D. Biochemistry of ensiling. In: BUXTON, D. R.; MUCK, R. E.; HARRISON, J. H. (Eds.). Silage Science and Technology. Madison: American Society of Agronomy, 2003. v. 1, cap. 3, p. 95–139.

SAVOIE, P., D’AMOURS, L. D. Density profile of herbage silage in bunker silos. Canadian Biosystems Engineering, Manitoba, v. 50, n. 3, p. 357-365, 2008.

SENGER, C. C. D. et al. Composição química e digestibilidade “in vitro” de silagem de milho com distintos teores de umidade e níveis de compactação. Ciência Rural, Santa Maria, v. 35, n. 6, p. 1393-1399, 2005.

SNIFFEN, C. J.; O'CONNOR, J. D.; VAN SOEST, P. S. A net carbohydrate and protein availability. Journal of Animal Science, Champaign, v. 70, n. 11, p. 3562-3577, 1992.

STATISTICAL ANALYSIS SYSTEMS INSTITUTE. SAS system for Microsoft Windows, version 8.2. Cary, 2003. 554 p

SURFER 10. User.s Guide/Contouring and 3D Surface Mapping for Scientists and Engineers. Golden Software, Inc., 2011.

VAN SOEST, P. J.; ROBERTSON, J. B.; LEWIS, B. A. Methods for dietary fiber, neutral detergente fiber and monstarch polysacharides in relation to animal nutrition. Journal Dairy Science, Champaign, v. 74, n. 10, p. 3586 – 3597, 1991.

WEINBERG, Z. G. et al. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. Journal of Applied Microbiology, Oxford, v. 75, n. 6, p. 512–518, 1993.

WILKINSON, J. M., DAVIES, D. R. The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, Oxford, v. 68, n. 1, p. 1-19, 2013.

Downloads

Published

13-09-2016

Issue

Section

Zootechnics