GREENHOUSE GAS FROM CASTOR BEAN PRODUCTION AND THEIR SUBPRODUCTS

Authors

  • Felipe José Cury Fracetto Departamento de Agronomia, UFRPE, Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife (PE).
  • Giselle Gomes Monteiro Fracetto Departamento de Agronomia, UFRPE, Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife (PE).
  • Brigitte Josefine Feigl Laboratório de Biogeoquímica Ambiental, CENA/USP, Av. Centenário, 303, 13400-970, Piracicaba (SP).
  • Carlos Clemente Cerri Laboratório de Biogeoquímica Ambiental, CENA/USP, Av. Centenário, 303, 13400-970, Piracicaba (SP).
  • Marcos Siqueira Neto Laboratório de Biogeoquímica Ambiental, CENA/USP, Av. Centenário, 303, 13400-970, Piracicaba (SP).

DOI:

https://doi.org/10.1590/1983-21252015v28n410rc

Keywords:

Brazilian semiarid. Land use change. Castor bean phytomass. Biofuel.

Abstract

The largest production of castor bean (Ricinus communis L.) focuses on Bahia savanna, where the change of land use to their cultivation has been considered a strategy of degraded areas recovery. However, changes in the native soil can arise environmental impacts as greenhouse gases (GHG) emissions. We have assumed that higher GHG emissions come from a change of land use for castor bean cultivation and their subproducts contribute to GHG emissions. The objective of this study was to make the inventory of the emission of GHG resulting from the castor bean cultivation and their sub-products. It was done a study in the municipality of Irecê-BA and were evaluated: changes in carbon (C) soil stocks in cultivated areas with castor bean and Local native forest; a number of senescent leaves and the biomass produced epigeal; GHG emissions from the sub- products of castor bean. The results showed that the sum of senescent leaves and epigeal biomass obtained by castor bean pruning is more than 1.6 Mg ha-1ano-1 and the castor bean residues used in this soil presented N2O emissions close to 600 μg m-2. The emissions from the use of castor oil biodiesel represented less than 10% of the emissions. The change in land use handled high emissions of greenhouse gases, accounting for 87% of the total in CO2eq. Compared to emissions estimated for sugarcane ethanol, castor biodiesel showed emissions 32% lower.

Downloads

Download data is not yet available.

Author Biography

Felipe José Cury Fracetto, Departamento de Agronomia, UFRPE, Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife (PE).

Conclui o doutorado na Universidade de Sao Paulo-ESALQ. Atualmente sou pós doc na UFRPE.

References

ALBUQUERQUE, U.P. et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. The Scientific World Journal, New York, v. 2012, n.3, p.1-18, 2012.

ALVES, A. R. et al. Aporte e decomposição de serrapilheira em área de Caatinga na Paraíba. Revista de Biologia e Ciências da Terra, Campina Grande, v. 6, n.2, p. 194-203, 2006.

ANDRADE, R. L. et al. Deposição de serrapilheira em área de Caatinga na RPPN “Fazenda Tamanduá”, Santa Terezinha – PB. Revista Caatinga, Mossoró, v. 21, n.2, p. 223-230, 2008.

AGÊNCIA NACIONAL DO PETRÓLEO-ANP. Relatório: Biodiesel 2014. Disponível em: http://www.anp.gov.br/biocombustiveis/biodiesel.asp. Acesso em 16 Out. 2014.

BUTTERBACH-BAHL, K. et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transaction of the Royal Society, Londres, v. 368, n.1, p.1-13, 2013.

CAMERON, K. C.; DI, H. J.; MOIR, J. L. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, Malden, v. 162, n.2, p. 145-173, 2013.

CASTRO, C. M.; DEVIDE, A. C. P.; ANACLETO, A. H. Avaliação de acessos de Pinhão Manso em sistema de Agricultura Familiar. Revista Tecnologia & Inovação Agropecuária, São Paulo, v. 1, n.1, p. 41-49, 2008.

CERRI, C. et al. Brazilian green house gas emissions: the importance of agriculture and livestock. Scientia Agricola, Piracicaba, v. 66, n.1, p. 831-843, 2009.

CHAVES, L. H. G. C.; ARAÚJO, D. L. Fitomassa e produção da mamoneira BRS nordestina adubada com NPK. Engenharia Ambiental, Espírito Santo do Pinhal, v. 8, n. 1, p. 222-231, 2011.

FARGIONE, J. et al. Land clearing and the biofuel carbon debt. Science, New York, v. 139, n.5867, p. 1235-1238, 2008.

FRACETTO, F. C. et al. Estoques de carbono e nitrogênio no solo cultivado com mamona na Caatinga. Revista Brasileira de Ciência do Solo, Viçosa, v. 36, n.5, p. 1545-1552, 2012.

HARRISON, R.; WEBB, J. A review of the effect of N fertilizer type on gas emissions. Advances in Agronomy, New York, v. 73, n.3, p. 65-108, 2001.

INSTITUTO BRASILEIRO DE GEOGRAFIA ESTATÍSTICA-IBGE. 2014. Levantamento Sistemático da Produção Agrícola de mamona. Disponível em: www.ibge.gov.br/. Acesso em: 17 jun. 2015.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE-IPCC. Technical summary on Climate change. Cambridge, 2012. 398 p.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE-IPCC. Contributions of Working Group I. of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2006. 398 p.

KANG, S. et al. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover, and air temperature. Forest Ecology and Management, Amsterdam, v. 136, n.1, p. 173-84, 2000.

LEAL, A. R. et al. Ciclos Econômicos e Emissão de CO2 no Brasil: Uma Análise Dinâmica para Políticas Ambientais Ótimas. Revista Brasileira de Economia, Rio de Janeiro, v. 69, n. 1, p. 53-73, 2015.

LIMA, R. L. S. et al. Casca e torta de mamona avaliados em vasos como fertilizantes orgânicos. Revista Caatinga, Mossoró, v. 21, n. 5, p. 102-106, 2008.

LIMA, R. L. S. et al. Blends of castor meal and castor husks for optimized use organic fertilizer. Industrial Crops and Products, New York, v. 33, n. 2, p. 364-368, 2011.

MACEDO, I. C.; SEABRA, J. E. A.; SILVA, J. E. A. R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, Londres, v. 32, n.7, p. 582-595, 2008.

MAJER, S. et al. Implications of biodiesel production and utilization on global climate – A literature review. European Journal of Lipid Science and Technology, Malden, v. 111, n.8, p. 747-762, 2009.

OGUNNIYI, D. S. Castor oil: A vital industrial raw material. Bioresource Technology, New York, v. 97, n. 9, p. 1086-1091, 2006.

PAUL, E. A.; CLARK, F. E. Soil microbiology and biochemistry. San Diego: Academic Press, 1989. 273 p.

RIGHI, C. A et al. Biomass burning in Brazil's Amazonian “arc of deforestation”: Burning efficiency and charcoal formation in a fire after mechanized clearing at Feliz Natal, Mato Grosso. Forest Ecology and Management, Amsterdam, v. 258, n.11, p. 2535-2546, 2009.

SANTOS, N. A. et al. 2004. Propriedades físico-químicas do biodiesel de mamona. Embrapa. Disponível em:
http://www.cnpa.embrapa.br/produtos/mamona/publicacoes/trabalhos_cbm1/144.pdf. Acesso em 1 mar. 2014.

SEVERINO, L. S. et al. Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. Revista de Biologia e Ciências da Terra, Campina Grande, v. 5, n.1, p. 1-6, 2004.

SEVERINO, L. S. et al. A review on the challenges for increased production of Castor. Agronomy Journal, Madison, v. 104, n.4, p. 853-880, 2012.

SILVA, N. L. et al. Optimization of biodiesel production from castor oil. Applied Biochemistry and Biotechnology, New York, v. 130, n.1, p. 405-414, 2006.

SISTI, C. P. J. et al. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, Amsterdam, v. 76, n.1, p. 39-58, 2004.

ZAGONELI, G. F.; RAMOS, L. P. Produção de biocombustível alternativo ao óleo diesel através da transesterificação de óleos vegetais. Revista de Química Industrial, Rio de Janeiro, v. 717, n.2, p. 17-26, 2001.

WANG, M. L. et al. A survey of the oil content on the entire USDA castor germplasm collection by NMR. Plant Genetics Resources, Cambridge, v. 8, n. 3, p. 229-231, 2010.

Published

18-11-2015

Issue

Section

Agronomy