PHYSICOCHEMICAL CHARACTERISTICS, ANTIOXIDANT CAPACITY AND PHENOLIC COMPOUNDS OF TOMATOES FERTIGATED WITH DIFFERENT NITROGEN RATES

Authors

  • Marcos Filgueiras Jorge Science, Technology and Agriculture Innovation Graduate Program, Agronomy Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ.
  • Kamila de Oliveira do Nascimento Food Science and Technology Graduate Program, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica RJ.
  • José Lucena Barbosa Junior Food Science and Technology Graduate Program, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica RJ.
  • Leonardo Duarte Batista da Silva Science, Technology and Agriculture Innovation Graduate Program, Agronomy Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ.
  • Maria Ivone Martins Jacintho Barbosa Food Science and Technology Graduate Program, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica RJ.

DOI:

https://doi.org/10.1590/1983-21252017v30n126rc

Keywords:

Fertirrigation. Physicochemical composition. Solanum lycopersicum L..

Abstract

The objective of this work was to evaluate the physicochemical and microbiological characteristics, antioxidant capacity and phenolic compounds of organic cherry tomatoes grown under fertigation with organic dairy cattle wastewater (DCW) with different nitrogen rates. Tomato plants, grown in an agroecological farm in Seropédica, State of Rio de Janeiro, Brazil, were subjected to four different nitrogen rates (T1=0, T2=50, T3=100 and T4=150% of N). The moisture, lipids, ashes, protein and total fiber contents, soluble solids (ºBrix), reducing and total sugars (%), pH and total titratable acidity (mg NaOH per 100 g) were evaluated. The total phenolic content (TPC) and the antioxidant capacity was determined by the DPPH and FRAP methods. The different nitrogen rates (%N) affected the pH, protein and soluble solids contents. The increase in %N increased the antioxidant capacities, according to the DPPH assay, and TPC. On the other hand, the tomatoes under fertigation with the highest %N presented lower antioxidant capacities according to the FRAP assay. The fertigation did not affect the microbiological characteristics of the tomatoes, which presented fecal coliforms count <3 NMP g-1 and absence of Salmonella in 25 g.

Downloads

Download data is not yet available.

References

ABDEL-MONAIM, M. F., et al. Effect of chemical inducers on root rot and wilt diseases, yield and quality of tomato. International Journal of Agricultural Sciences, Brooklyn, v. 2, n. 2, p. 2011-2020, 2012.

AGRAWAL, M.; SINGH, A. Reduction in metal toxicity by applying different soil amendments in agricultural field and its consequent effects on characteristics of radish plants (Raphanus sativus L.). Journal of Agricultural Science and Technology, Tehran, v. 15, n. 1, p. 1553-1564, 2013.

ALDRICH, H. T. et al. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content. Journal of the Science of Food and Agriculture, Nova York, v. 90, n. 15, p. 2548–2555, 2010.

ALVES, S. M. C. et al. Balanço do nitrogênio e fósforo em solo com cultivo orgânico de hortaliças após a incorporação de biomassa de guandu. Pesquisa Agropecuária Brasileira, Brasília, v. 39, n. 11, p. 1111-1117, 2004.

ARBOS, K. A. et al. Segurança alimentar de hortaliças orgânicas: aspectos sanitários e nutricionais. Ciência e Tecnologia de Alimentos, Campinas, v. 30, Sup., p. 215-220, 2010.

Association of Official Analytical Chemists (AOAC). (2010). Official methods of analysis of AOAC International. 18 ed., 3ª rev, 2010.

BÉNARD, C. et al. Effects of low nitrogen supply on tomato (Solanum lycopersicum L.) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry, Washington, v. 57, n. 10, p. 4112–4123, 2009.

BORGUINI, R. G. et al., Antioxidant potential of tomatoes cultivated in organic and conventional systems. Brazilian Archives of Biology and Technology, Curitiba, v. 56, n. 4, p. 521-529, 2013.

BRASIL, Ministério da Saúde, Agência Nacional de Vigilância Sanitária, Resolução RDC. nº 12, de 02 Janeiro de 2001. Aprova regulamento técnico sobre padrões microbiológicos para alimentos. Diário Oficial da República Federativa do Brasil, Brasília, 02 de janeiro 2001. Disponível em: <http://www.anvisa.gov.br/e-legis/>. Acessado em: 20 mai. 2015.

BRASIL, Ministério da Agricultura e Abastecimento. Lei Nº 10831, de 23 de dezembro de 2003- Dispõe sobre a agricultura orgânica e dá outras providências. Disponível em: < http://www.planalto.gov.br/ccivil_03/leis/2003/L10.831.htm>. Acesso em: 11 out. 2010.

CARBONARO, M. et al. Modulation of Antioxidant Compounds in Organic vs Conventional Fruit (Peach, Prunus persica L., and Pear, Pyrus communis L.). Journal of Agricultural and Food Chemistry, Washington ,v. 50, n. 19, p. 5458-5462, 2002.

CHAUHAN, H. et al. Novel plant growth promoting rhizobacteria—Prospects and potential. Applied Soil Ecology, Amsterdam, v. 95, n. 1, p. 38-53, 2015.

CHRISTOU, A. et al. Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agriculture, Ecosystems & Environment, Amsterdam, v. 192, n. 1, p. 105-114, 2014.

CHOI, S. H., et al. Protein, free amino acid, phenolic, β-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. Journal of Food Composition and Analysis, Amsterdam, v. 34, n. 2, p. 115-127, 2014.

DUMAS, Y.; et al. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of Science and Food Agriculture, Nova York, v. 83, n. 5, p. 369-382, 2003.

ERTHAL, V. J. T. et al. Alterações físicas e químicas de um Argissolo pela aplicação de água residuária de bovinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 14, n. 5, p. 467-477, 2010.

FAOSTAT. (2012). Agricultural data (last updated August, 2010-2012). Food and Agriculture Organization of the United Nations. Available from: http://faostat.fao.org/site/339/default.aspx. [Available: Aug 19 2012].

FERRARI, A. A., et al. Chemical composition of tomato seeds affected by conventional and organic production systems. Journal of Radioanalytical and Nuclear Chemistry, London, v. 278, n. 2, p. 399-402, 2008.

FIGÀS, M. R. et al. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food chemistry, Amsterdam, v. 187, n. 1, p. 517-524, 2015.

GUILHERME, D. O. et al. Análise sensorial e físico-química de frutos tomate cereja orgânico. Revista Caatinga, Mossoró, v. 27, n. 1, p. 181-186, 2014.

HELYES, L. et al. Effect of maturity stage on content, color and quality of tomato (Lycopersicon lycopersicum (L.) Karsten) fruit. International Journal of Horticultural Science, Budapest, v. 12, n. 1, p. 41–44, 2006.

KAPOULAS, N. et al. Effect of organic and conventional production practices on nutritional value and antioxidant activity of tomatoes. African Journal of Biotechnology, Nairobi, v. 10, n. 71, p. 15938-15945, 2011.

LIAO, Y. et al. Document Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences, Alberta, v. 12, n. 5, p. 1403-1413, 2015.

LIU, T. et al. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation. Scientia Horticulturae, Amsterdam, v. 170, n. 1, p. 159-168, 2014.

NKOA, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, London, v. 34, n. 2, p. 473-492, 2014.

PICHA, D. H. Sugar and organic acid content of cherry tomato fruit at different ripening stages. HortScience, Alexandria, v. 22, n.1, p. 94-96, 1987.

QUETTIER-DELEU, C. et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, Amsterdam, v. 72, n. 1, p. 35–42, 2000.

ROCHA, M. C., et al. Descritores quantitativos na determinação da divergência genética entre acessos de tomateiro do grupo cereja. Revista Ciência Rural, Santa Maria, v. 39, n. 3, p. 664-670, 2009.

ROSALES, M. A. et al. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, Nova York, v. 91, n. 1, p. 152-162, 2011.

RUFINO, M. S. M. et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food chemistry, Amterdam, v. 121, n. 4, p. 996-1002, 2010.

PINHO, L. et al. Nutritional properties of cherry tomatoes harvested at different times and grown in an organic cropping. Horticultura Brasileira, Brasília, v. 29, n. 2, p. 205-211, 2011.

SILVA, A. C., et al. Avaliação de linhagens de tomate cereja tolerantes ao calor sob sistema orgânico de produção. Revista Caatinga, Mossoró, v. 24, n. 3, p. 33-40, 2011.

SINGH, H. et al. Evaluation of Total Phenolic Compounds and Insecticidal and Antioxidant Activities of Tomato Hairy Root Extract. Journal of Agriculture and Food Chemistry, Washington, v. 62, n. 12, p. 2588-2594, 2014.

SINGLETON, V. L.; ROSSI JR, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, Davis, v. 16, n. 3, p. 144-158, 1965.

SORREQUIETA, A. et al. Free amino acid production during tomato fruit ripening: a focus on L-glutamate. Amino Acids, London, v. 38, n. 5, p. 1523-1532, 2010.

STOUT, M. J.; BROVONT, R. A.; DUFFEY, S. S. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. Journal of Chemical Ecology, London, v. 24, n. 6, p. 945-963, 1998.

SUÁREZ, M. H.; RODRÍGUEZ, E. R.; ROMERO, C. D. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. European Food Research and Technology, London, v. 226, n. 3, p. 423-435, 2008.

SWAIN, T.; HILLIS, W. E. The phenolic constituents of prunus domestica. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, Nova York, v. 10, n. 1, p. 63-68, 1959.

TOOR, R. K.; SAVAGE, G. P.; HEEB, A. Influence of different types of fertilizers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, Amsterdam, v. 19, n. 1, p. 20-27, 2006.

TORRES, D. E. G. et al. Antioxidant activity of macambo (Theobroma bicolor L.) extracts. European Journal of Lipid Science and Technology, Nova York, v. 104, n. 1, p. 278-281, 2002.

TURHAN, A.; SENIZ, V. Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in Turkey. African Journal of Agricultural Research, Nairobi, v. 4, n. 10, p. 1086-1092, 2009.

VANDERZANT, C.; SPLITTSTOESSER, D. F. Compendium of methods for the microbiological examination of foods. Washington: American Public Health Association, 1992. 1219 p.

WARNER, J.; ZHANG, T. Q.; HAO, X. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Canadian Journal of Plant Science, Ottawa, v. 84, n. 3, p. 865-861, 2004.

Downloads

Published

02-12-2016

Issue

Section

Food Engineering