Water regimes on the development of accessions of the Manihot genus

Authors

DOI:

https://doi.org/10.1590/1983-21252023v36n323rc

Keywords:

Semiarid region. Plant morphology. Selection of accessions. Tolerance to water deficit.

Abstract

The objective of this work was to select water deficit-tolerant accessions of the genus Manihot, through morphological characters under different water regimes. The experiment was conducted in a randomized block design, using a split-plot arrangement with plots consisting of tree water regimes (simulated rainfall and water depth of 100 and 20% crop evapotranspiration (ETc)), and subplots consisting of eight accessions of the genus Manihot (Gema-de-Ovo and Engana-Ladrão from the species M. esculenta Crantz, and BGMS-115, BGMS-110, BGMS-102, BGMS-79, BGMS-24, and BGMS-48 from Manihot sp.). The accessions were evaluated considering two crop cycles: the first had 120 and 60 days from the application of the treatments. Plant height, stem diameter, number of leaves, leaf lobe length and shoot dry mass production were evaluated. For each cropping cycle, a split-plot analysis of variance was performed. The highest genotypic means were expressed by the accessions BGMS-115, BGMS-102, BGMS-79 and BGMS-24 for most of the analyzed variables, regardless of the cultivation cycle. For the characteristic shoot dry mass production, accessions BGMS-102 and BGMS-79 showed the best performances under conditions of limited water regime (20% ETc), regardless of the cropping cycle. Accession BGMS-102 was also grouped in the group with the highest genotypic means, for this trait, in treatments with rain simulation and 100% ETc, in the first cycle, demonstrating that, under stress conditions, this accession is an option to tolerate low water precipitation and responds well when higher precipitation occurs.

Downloads

Download data is not yet available.

Author Biography

Rafaela Priscila Antonio, Embrapa Semiárido, Petrolina, PE

Genética e Melhoramento de plantas/Departamento de Ciênias Vegetais

References

ALLEN, R. G. et al. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO - Irrigation and Drainage Paper, 56 ed. Rome: FAO, 1998. 300 p.

ANJUM, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6: 2026-2032, 2011.

ARAÚJO FILHO, J. T. et al. Características morfológicas e produtivas da maniçoba cultivada sob lâminas hídricas e doses de nitrogênio. Revista Brasileira de Saúde e Produção Animal, 14: 609-623, 2013.

ARRUDA, I. M. et al. Crescimento e produtividade de cultivares e linhagens de amendoim submetidas a déficit hídrico. Pesquisa Agropecuária Tropical, 45: 146-154, 2015.

BERGANTIN, R. V. et al. Screening cassava genotypes for resistance to water deficit during crop establishment. Philippine Journal of Crop Science, 29: 29-39, 2004.

BERNIER, J. et al. Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 88: 927-939, 2008.

CAYÓN, M. G.; EL-SHARKAWY, M. A.; CADAVID, L. F. Leaf gas exchange of cassava as affected by quality of planting material and water stress. Photosynthetica, 34: 409-418, 1997.

DUTRA, C. C. et al. Desenvolvimento de plantas de girassol sob diferentes condições de fornecimento de água. Semina: Ciências Agrárias, 33: 2657-2668, 2012.

ELLIOTT, J. et al. Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems, 159: 275-281, 2018.

FERREIRA, A. L. et al. Produção e valor nutritivo da parte aérea da mandioca, maniçoba e pornunça. Revista Brasileira de Saúde e Produção Animal, 10: 129-136, 2009.

FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A. ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0. 2018. Disponível em: https://cran.r-project.org/web/packages/ ExpDes.pt/ExpDes.pt.pdf. Acesso em: 06 dez. 2021.

GUIMARÃES FILHO, C.; SOARES, J. G. G.; RICHÉ, G. R. Sistema caatinga-buffel-leucena para produção de bovinos no semi-árido. Petrolina, PE: EMBRAPA-CPATSA, 1995. 39 p. (Circular técnica, 34).

KELLER, J.; BLIESNER, R. D. Sprinkle and trickle irrigation. New York: Van Nostrand Reinold, 1990. 652 p.

KELLER, J.; KARMELI, D. Trickle irrigation design parameters. American Society of Agricultural and Biological Engineers, 17: 678-684, 1974.

MANSOUR, E. et al. Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agricultural Water Management, 194: 58-67, 2017.

MANTOVANI, E. C. AVALIA: Programa de Avaliação da Irrigação por Aspersão e Localizada. Viçosa, MG: UFV, 2001. 260 p.

MATOS, F. S. et al. Produtividade de cultivares de mandioca sob déficit hídrico. Agri-Environmental Sciences, 2: 17-24, 2016.

MERWAD, A. R. M. A.; DESOKY, E. S. M.; RADY, M. M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228: 132-144, 2018.

MORAES, L. et al. Avaliação da área foliar a partir de medidas lineares simples de cinco espécies vegetais sob diferentes condições de luminosidade. Revista Brasileira de Biociências, 11: 381-387, 2013.

OKOGBENIN, E. et al. Phenotypic approaches to drought in cassava: review. Frontiers in Physiology, 4: 1-15, 2013.

OLIVEIRA, E. J. et al. Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica, 213: 1-20, 2017.

OLIVEIRA, E. J. et al. Genetic parameters for drought-tolerance in cassava. Pesquisa Agropecuária Brasileira, 50: 233-241, 2015.

PEZZOPANE, C. G. et al. Estresse por deficiência hídrica em genótipos de Brachiaria brizantha. Ciência Rural, 45: 871-876, 2015.

PUTPEERAWIT, P. et al. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava. Plant Physiology and Biochemistry, 121: 118-127, 2017.

RITCHIE, G. A. et al. Assessing Plant Quality. In: LANDIS, T. D.; DUMROESE, R. K.; HAASE, D. L. (Eds.). The container tree nursery manual. DC: U.S. Department of Agriculture Forest Service, 2010. v. 7, cap. 2, p. 17-80. (Agricultural Handbook, 674).

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.

SANTOS, D. et al. Cultivares de trigo submetidas a déficit hídrico no início do florescimento, em casa de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental, 16: 836-842, 2012.

TEODORO, P. E. et al. Acumulação de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Jornal, 31: 161-170, 2015.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6 ed. Porto Alegre, RS: Artmed, 2017, 888 p.

VALE, N. M. et al. Avaliação para tolerância ao estresse hídrico em feijão. Biotemas, 25: 135-144, 2012.

VANDEGEER, R. et al. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Functional Plant Biology, 40: 195-200, 2013.

ZHANG, J.; MU, Q.; HUANG, J. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecological Indicators, 63: 296-309, 2016.

ZHAO, H. et al. A drought rarity and evapotranspiration-based index as a suitable agricultural drought indicator. Ecological Indicators, 82: 530-538, 2017.

Downloads

Published

18-07-2023

Issue

Section

Technical Note